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Abstract.  There are numerous published methods on the discretization of continuous variables.  However, most of these methods are computationally intensive and some have limitations on the circumstances under which they may be used.  No single method was found to be both effective and efficient when constructing engineering models containing mixed data sets.  What is needed is a single, efficient method for the discretization of continuous variables for the construction of Bayesian networks or influence diagrams that contain both discrete and continuous variables.  This paper proposes such a method using the derivative of either a direct function or a function representing a data set once the network structure is determined.  The method has high computational efficiency in that all information needed to determine the number of bins can be obtained by calculating the cut point for the first bin.  Once the number of bins is determined, the discretization process is performed only once.  The method can be used on mixed continuous-discrete variables and with multiple variables.  Multiple variable sets are discretized simultaneously resulting in greater computational efficiency.

1.  Introduction
Numerous methods have been proposed for the discretization of continuous variables in Bayesian networks and influence diagrams.  A comprehensive collection and comparison of methods is contained in Liu et. al.  The method of discretization can be divided into two principal types: supervised and unsupervised.  All supervised methods require class information (Liu et. al., 2002).  Thus, if we have a database of information and wish to learn a Bayesian network or influence diagram from the data, an unsupervised method is the only option for discretizing the values of a continuous variable.  The only two methods of unsupervised discretization are the equal width and equal frequency methods.  The equal width method sorts the data, takes the distance between the minimum and maximum and sets the bin widths at equal intervals between the minimum and maximum based on a set number of bins.  The equal frequency methods sorts the data, counts the total number of data points and then divides up the bin widths so that an equal number of points are placed in each bin based on a given number of bins.  If the data points are not divisible into a whole number, the last bin may contain more or less data than the other bins.  Some software for structural learning from data sets such as the data preprocessor software that comes with Belief Network Power Constructor uses these methods.

Although suitable for learning of network structural relations, unsupervised methods are not suitable for the final network discretization for continuous variables.  Discretization using these methods may not provide good results in cases where the values are not uniform and is vulnerable to outliers (Catlett, 1991).  There are several supervised methods for binning of continuous variables once the structure is known.  These include entropy methods such as ID3, D2, MDLP, Contrast and Mantaras Distance.  They also include merging methods such as ChiMerge, Chi2, and ConMerge as well as other methods such as 1R, Marginal Entropy, Zeta and Adaptive Quantizer (Liu et. al., 2002).  However, all these methods look at discretizing a continuous variable by either splitting or merging the cut points based on multiple discretizations of a data set.  No method has been developed for direct, simultaneous discretization of multiple continuous variables.  This paper presents such a method for discretization of continuous variables given the network structure.
2.  The Derivative Method

The derivative method is a supervised method of discretization and therefore is conducted after node relationships are known.  As an example, we have now determined that a conditional probabilistic relationship exists between two continuous nodes X and Y and that the direction of the arc is from X to Y as shown in figure 1.
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Figure 1
Network Relationship

The derivative method can be applied if Y = F(X) such that the function is continuous and differentiable.  The variable X contains continuous values x1, x2, …, xn and the variable y contains continuous values y1, y2,…, yn such that X and Y have an equal number of points.  The first step in discretizing the variables is to sort on the independent variable in ascending order.  In this case we sort the x-y pairs on X in ascending order.  The next step is to find the derivative at each point of the dependent variable.  For the range of X of x2 to xn-1, the derivative at yi is calculated using the formula

dyi/dx = (yi+1 – yi-1) / (xi+1 – xi-1)

For the endpoints y1 and yn, the formula is modified to

dy1/dx = (y2 – y1) / (x2 – x1)

and

dyn/dx = (yn – yn-1) / (xn – xn-1)

The next step is to sum the absolute value of all the derivatives to find the total amount of change over the entire range of the variables.  This is found using the formula







    n

total change = Σ | dyi/dx |







   i=1

The central concept of the derivative method is to place an equal amount of change into each bin.  The simplest case is if the number of bins is specified as an input.  The amount of change in each bin is defined by
change per bin = total change / # bins

The final step is to find the cut points that define the bin widths.  To do this, begin setting the x1 and y1 as the beginning of the first bin for each variable.  Start summing the absolute value of the derivative at each point.  Each time you add a derivative, check to see if the sum has exceeded the change per bin limit.  If it has not exceeded the value, continue by adding the next absolute value derivative.  If it has exceeded the value, there is a cut point in the interval between the current and last value of x and y.

Once the cut interval has been identified, the exact cut value must be determined.  Since we wish to place the same amount of change in each bin, the exact cut point is found as a percentage of the distance the change per bin value lies between the two values of x and y.  If j is an integer count of the number of derivative values that were added until the sum exceeded the change per bin value, then the percentage is
percent = (change per bin – (sum – dyj/dx)) / (dyj/dx)
The cut points in data sets X and Y is then found by 
xcut = xj-1 + percent * (xj – xj-1)

and

ycut = yj-1 + percent * (yj – yj-1)

The value of sum must be reset to the amount over the change per bin value

sum = sum – change per bin
The process is now repeated until all the cut points are found.  This completes the discretization of the function data set using derivative method.

3.  Discretization of Functions
For the first example, we will consider the case of discretizing data from the normal distribution over -5 < x < 5 with mean 0 and standard deviation of 1 as shown in figure 2.
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Figure 2

Normal Distribution

The data is discretized into 7 bins.  The cumulative normal distribution discretized into 7 bins is shown in figure 3.
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Figure 3

Cumulative Normal Distribution 

To demonstrate the algorithm can handle mixed positive and negative slopes, the descretization of the Sine function with 12 bins is shown in figure 4.
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Figure 4

Sine Function

4.  Determining the Number of Bins

In the description of the derivative method, we used the simple case of having the number of bins as an input to the binning algorithm.  However, in most cases it would be more useful to determine the number of bins based on how the final network will be used.  Two possible criteria would be to insure a specified accuracy of the output or to determine the optimum number of bins for the given data.  The optimum is defined as the most information provided by the data for the least number of bins used based on a weighting supplied as an input.  One major advantage of the derivative method is that it places the same amount of change into each bin.  The maximum bin width will occur for bins that discretize data that has either all positive or all negative slopes in the interval of the bin.  This property allows us to calculate the cut point for the first bin and determine enough information to find either an accuracy limit or an optimum.  The ability to look at only the first bin and pre-calculate the desired number of bins based on input criteria prior to finding the remainder of the cut points is expected to provide a substantial improvement in computational efficiency over other published methods.

To determine the width of the first bin, one applies the derivative method discretization described in section 2 to find the first cut point.  Once this point is found, one can find the maximum width of any other bin by summing the absolute value of the difference between a point and the next point, starting with the first point of the dependent variable and ending with the cut point.  If the slope is all of the same sign within the interval (i.e. all positive or negative) such as the examples in figures 2 and 3, then the difference between the cut point and start point will be the same as the absolute value summation.  However, if the slopes are mixed such as the example in figure 4, then the first bin width will be less than ones that have all the same slope.  The absolute value calculation is necessary that we find the maximum bin width among all the bins from data in the first bin.

With the maximum bin width, we can determine the accuracy of the network.  Bayesian network software programs return the center point of a bin if queried.  Thus, the maximum error between what is reported by the network would occur if the true answer were at a cut point while the network reported the center point.  Thus the maximum error is maximum bin width / 2.  A search algorithm to specify a minimum accuracy would be as follows:

1. #bins = 2

2. find cut point and maximum bin width of first bin

3. If specified accuracy > (maximum bin width / 2), then increase #bins by 1 and repeat 2.  If less than, go to 4.
4. Find the rest of the cut points using current value of #bins

A second criterion for the final network might be to create an efficient network that balances the accuracy of the network with the number of bins.  The more bins a network contains, the larger the final network and the larger the number of probabilities that must be specified for that node.  An efficient network would minimize the number of bins for each continuous node.  Using the normal distribution of figure 2 and calculating the maximum bin width for a given number of nodes, one can obtain the chart in figure 5.
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Figure 5

Number of Bins vs. Width

As can be seen in the plot, there are clearly diminishing returns for minimizing the width of any bin (improving its accuracy) and the total number of bins used.  Finding an optimum number is not feasible by calculation directly from the data.  As can be seen in figure 5, the axes are not the same scale so that a “knee in the curve” approach would change the answer if a different scale was used.  To find an optimum point, the authors propose allowing the user to specify a weight to be used for scaling.  Applying the weight to the data of figure 5 and using the formula
loss function = weight * #bins + (1 – weight) * max width

and using a value of 0.02 for weight results in the plot of figure 6.
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Figure 6

Loss Function

As can be seen from figure 6, an optimum number of bins for the given weight can now be calculated as the minimum point of the loss function.  The following is the algorithm for determining the optimum number of bins. 
1. #bins = 2

2. last = 1000

3. find cut point and maximum bin width of first bin

4. loss = weight * #bins + (1 – weight) * max bin width

5. If  loss < last, then increase #bins by 1, last = loss and repeat 3.  If greater than, go to 4.

6. Find the rest of the cut points using #bins -1
The algorithm calculates the loss function until the current loss function value is greater than the last one.  This indicates that the optimum value was at the previous number of bins.

5.  Discretizing Data Sets

The derivative method can not be used directly on data sets.  This method is limited to continuous, differentiable functions.  Direct use on data sets would measure data scatter instead of slope of the curve resulting in poor selection of cut points.  However, the method can be used by fitting a curve to the data set and then applying the derivative method to the fitted curve.  There are many methods that can be used to determine a curve fit to a data set.  Any method that provides a reasonable curve fit to the data should provide acceptable results.  As an example, test data for the WF-360TL Infrared Sensor System along with specification performance data for narrow field of view mode is provided in figure 7.
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Figure 7

WF-360TL Infrared Performance Data

The data shows the range at which an observer was able to detect a target as a function of the difference between the temperature of the target and the background temperature.  Data was measured by multiple students over multiple test flights at the U.S. Naval Test Pilot School resulting in significant data scatter.


To use the derivative method, a curve is first fit to the data.  For this example, a neural net fit is applied as shown in figure 8.
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Figure 8

Neural Net Curve Fit to FLIR Test Data

The derivative method can now be applied to the curve to find the cut points for the data set.  The cut points for seven bins are shown overlaying the curve in figure 9.
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Figure 9

Cut Points for FLIR Data Set

In this example, there are many data points and one can visually see from figure 9 that there are data points that would fall in each bin.  However, if the available data was scarce and there were areas of the curve with very steep slopes, it would certainly be possible to encounter discretizations were some bins had no data.  This would result in a poor performing network.  To make sure this does not happen, a check should be completed after descretization of the curve to identify any bins that do not have at least one data point from the data set that falls within the range of each bin.  If bins are identified that have no points from the data set within the range, points would be added to the data set from the curve fit.  This data could be added with lower confidence than the data set points (i.e. when learning from the data set, test points would be counted for a higher number of cases than the curve fit data).

The derivative method provides a superior discretization of the data than previously published methods.  Other published methods determine cut points based on the data provided.  Thus, if data is scarce and steep slopes exist, these methods will tend to widen the bins even in high slope areas to fit the available data.  The derivative method measures the slope of the data set as a whole and determines the cut points with no regard to the amount of data.  {Note: This should be true, but should be proven.  It would be nice if Ning could run some cases to actually show this.}
6.  Working with Mixed Discrete-Continuous Variable Sets

To this point we have worked with continuous variable pairs.  Real networks will likely contain mixtures of discrete and continuous variables.  From a programming standpoint, it is desirable to minimize the number of discretization routines that must be programmed for computational efficiency.  Another advantage of the derivative method is that it can be applied to mixed pairs containing both discrete and continuous data.  If such a case occurs, we do not care about the direction of the arc in the network structure.  The discrete variable already has a fixed number of states.  The problem is to find the cut points in the continuous variable that divides the data into a number of bins that equals the number of states of the continuous variable.  As an example, let us take a theoretical sample of people sitting in the waiting room of a doctor’s office.  The average temperature of a well person is 98.6 degrees F.  However, this is an average so a well person may be above or below this number.  Some illnesses are accompanied by fevers that cause temperature to be above normal.  Therefore, a person with a high temperature is very likely to be sick, but a person with a normal temperature may or may not be well.

Assume we have a sample of twelve patients with temperatures and diagnoses as shown in table 1.

	Temperature
	Diagnosis

	98.2
	Well

	97.7
	Well

	99.1
	Sick

	102.3
	Sick

	99.2
	Well

	104.2
	Sick

	98.0
	Well

	98.7
	Sick

	98.9
	Well

	100.2
	Sick

	98.7
	Well

	99.1
	Well


Table 1

Sample Mixed Data Set

To apply the derivative discretization method, we would first sort the data pairs on the continuous variable in ascending order.  We would then assign a state number to the discrete variable states starting with zero for the state that predominates at the bottom of the sorted pairs and then adding one for each other state in ascending order.  Applying these actions results in the data set contained in table 2.

	Temperature
	Diagnosis

	97.7
	0

	98.0
	0

	98.2
	0

	98.7
	1

	98.7
	0

	98.9
	0

	99.1
	1

	99.1
	0

	99.2
	0

	100.2
	1

	102.3
	1

	104.2
	1


Table 2

Processed Data Set

The data is now in the format of a continuous differentiable function and the derivative method can be applied.  Applying the procedure finds an optimum number of bins to be three with results shown in figure 10.
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Figure 10

Temperature Cut Points

If one applies this discretization to the variable temperature and then uses the data to learn the probabilities the network of figure 11 is obtained.  
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Figure 11

Health Diagnostic Network

If someone’s temperature is between 97.8 and 98.8, then there is a 71.4% chance the person is well.  If their temperature is between 98.7 and 99.1, then there is a 66.7% chance the person is well.  If the person’s temperature is between 99.1 and 104, then there is only a 37.5% chance they are well.  This provides good performance for the data provided.
7.  Discretization with Multiple Nodes

Prior examples have been limited to two variables to demonstrate the derivative discretization algorithms.  Real world networks will not be limited to a single arc between two nodes.  Since a continuous node may contain only one set of discretization ranges, consideration must be given to all arcs in and out of the node.  Examples of three multiple node networks are shown in figure 12.
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Figure 12
Multiple Node Networks
The derivative method for discretizing multiple variables is the same for all cases shown in figure 12.  An example problem with three functions is shown in figure 13.
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Figure 13

Node C Data Sets

These data sets were specifically chosen so that they had steep slopes at opposite ends of the range and the functions are not symmetric, making it a difficult discretization problem.


To use the derivative method, the same procedures described in section two are used with modifications to handle the multiple variables.  In this case, the derivative at each point in both functions is found and the total change is the sum of both derivatives.
      n

total change = Σ | dyi1/dx | + | dyi2/dx |






     i=1

We are now measuring the total change over all of the nodes.  The algorithm now sums the derivative of both functions at each point.  The same method described in part 2 is then used to find the cut points in each node.  Applying the method to the data of figure 13 for seven bins results in the discretization shown in figure 14.
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Figure 14

Discretization of Multiple Nodes

This method can be extended to any number of functions that must be discretized.  If j is the number of functions, then the total change for a network with m functions becomes

      
  n   m
total change = Σ Σ | dyij/dx |






     
i=1 j=1
When determining the cut points, all the derivatives from each function are added together at each point.  Determining the number of bins must be done on one of the nodes, most likely the output node of interest.  Either the desired accuracy or an optimum described in section 4 can be used.
8.  Results and Conclusions

The derivative method provides high computational efficiency for computer generated discretization of continuous variables.  It is very flexible and can accommodate both multiple variables and mixed discrete-continuous variables.  When working with data sets, it provides superior discretization over methods that work directly with the data points since the derivative method is using the data set as a whole.
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