
Action

Issues

Measures

Indicators

Analysis

Information

P RACTICAL
 S OFTWARE
 M EASUREMENT

A guide to objective program insight

Page ii

Page iii

FOREWORD

One of the most challenging tasks in the Department of Defense is
delivering a software intensive system that meets program cost,
schedule, and performance objectives. With more of the capability
in today’s Weapons and Automated Information Systems
implemented in software, effective management of the software
development and support efforts has become critical to program
success.

As a DoD Program Manager, the introduction of new acquisition
requirements and new software technologies increases the need for
more effective software management techniques. Key software
issues have to be identified, prioritized, and managed. You have to
have the right information to make informed decisions about the
software issues throughout the course of the program.

Practical Software Measurement: A Guide to Objective Program
Insight, was developed to help you meet these software
management challenges. PSM describes how to define and
implement a software measurement process to address the unique
management and information needs of your program. The guidance
in Practical Software Measurement is based on actual software
measurement experience on successful DoD and industry programs.
It represents the best practices used by measurement professionals
within the software acquisition and engineering communities.

This version of Practical Software Measurement explains how to
select the measures for your program and how to analyze the
measurement results to manage your software issues. Practical
Software Measurement Version 3.0, currently under development,
will contain more extensive software analysis and estimation
guidance. We welcome your contributions to Practical Software
Measurement, and your participation in the project.

John McGarry
Naval Undersea Warfare Center

Page iv

Page v

ACKNOWLEDGMENTS

The following software measurement professionals have been principal contributors in the
development of Practical Software Measurement: A Guide to Objective Program
Insight.

Elizabeth Bailey
INSTITUTE FOR DEFENSE ANALYSES

Cheryl Jones
NAVAL UNDERSEA WARFARE CENTER

David Card
SOFTWARE PRODUCTIVITY SOLUTIONS, INC.

Beth Layman
SOFTWARE PRODUCTIVITY SOLUTIONS, INC.

Joseph Dean
TECOLOTE RESEARCH, INC.

John McGarry
NAVAL UNDERSEA WARFARE CENTER

The following software measurement professionals have participated in the development of
Practical Software Measurement: A Guide to Objective Program Insight.

Bruce Allgood
US AIR FORCE
SOFTWARE TECHNOLOGY SUPPORT CENTER

Paul Janusz
US ARMY ARDEC

James Arthur
VIRGINIA POLYTECHNIC INSTITUTE

John Keddy
NAVAL UNDERSEA WARFARE CENTER

Lt. Col. Terrence Brotherton
INFORMATION RESOURCES MANAGEMENT COLLEGE

Kenneth Kelley
DEFENSE INFORMATION SYSTEMS AGENCY

Luke Campbell
NAVAL AIR WARFARE CENTER

Ron Larson
US NAVY PEO CU

Anita Carleton
SOFTWARE ENGINEERING INSTITUTE

Steven Law
DEFENSE INFORMATION SYSTEMS AGENCY

David Castellano
US ARMY ARDEC

Scott Lucero
US ARMY
OPERATIONAL TEST AND EVALUATION COMMAND

Carl Crawford
NAVAL SURFACE WARFARE CENTER

John Marciniak
KAMAN SCIENCES CORPORATION

Deborah DeToma
GTE GOVERNMENT SYSTEMS CORPORATION

Charles McPherson
US ARMY MATERIEL COMMAND

Page vi

Jim Dobbins
DEFENSE SYSTEMS MANAGEMENT COLLEGE

Richard Nance
VIRGINIA POLYTECHNIC INSTITUTE

David R. Erickson
US AIR FORCE
SOFTWARE TECHNOLOGY SUPPORT CENTER

Raymond Paul
OFFICE OF THE UNDER SECRETARY OF DEFENSE - A&T

Mike Falat
DEFENSE INFORMATION SYSTEMS AGENCY

Margaret Powell
NAVAL INFORMATION SYSTEMS MANAGEMENT CENTER

William Farr
NAVAL SURFACE WARFARE CENTER

Edward Primm
NAVAL SURFACE WARFARE CENTER

Stewart Fenick
US ARMY CECOM

Bryce Ragland
US AIR FORCE
SOFTWARE TECHNOLOGY SUPPORT CENTER

William Florac
SOFTWARE ENGINEERING INSTITUTE

Anthony Shumskas
BDM ENGINEERING SERVICES COMPANY

John Gaffney
SOFTWARE PRODUCTIVITY CONSORTIUM

Lynn Simms
LOGICON

Tony Guido
NAVAL AIR SYSTEMS COMMAND

Raghu Singh
SPACE AND NAVAL WARFARE SYSTEMS COMMAND

Fred Hall
INDEPENDENT ENGINEERING, INC.

O.T. Smith
US AIR FORCE MATERIEL COMMAND

Robert Hegland
US ARMY
INFORMATION SYSTEMS SOFTWARE CENTER

George Stark
THE MITRE CORPORATION

Jeffrey Heimberger
SOFTWARE PRODUCTIVITY SOLUTIONS, INC.

Stephen Thompson
US ARMY PEO STAMIS

Scott Hissam
LORAL DEFENSE SYSTEMS - EAST

Sharyn Tolochko
US ARMY ARDEC

Kevin Holt
DEFENSE LOGISTICS AGENCY

Page vii

TABLE OF CONTENTS

PART 1 - THE SOFTWARE MEASUREMENT PROCESS

CHAPTER 1 - PROGRAM MANAGEMENT AND THE MEASUREMENT
PROCESS................................7

1.1 Managing a Software Intensive Program...7

1.2 Overview of Measurement Process..Error! Bookmark not defined.

1.3 Software Measurement Principles..11
1.3.1 Program Issues and Objectives...13
1.3.2 Developer’s Software Process...14
1.3.3 Low Level Data..14
1.3.4 Independent Analysis Capability..15
1.3.5 Structured Analysis Process..15
1.3.6 Results in Program Context..16
1.3.7 Life Cycle Integration...17
1.3.8 Objective Communications...18
1.3.9 Single-Program Analysis..19

1.4 Measurement Implementation Considerations...20

CHAPTER 2 – TAILORING SOFTWARE MEASURES................................21
2.1 Measurement Tailoring Overview..21

2.2 Identify and Prioritize Program Issues...22
2.2.1 Program-Specific Issues...23
2.2.2 Common Software Issues..24
2.2.3 Identifying Program Issues...25
2.2.4 Prioritizing Program Issues..26

2.3 Select and Specify Program Measures..27
2.3.1 Measurement Category Selection..28
2.3.2 Measurement Selection Criteria..28
2.3.3 Specifying Data and Implementation Requirements..30

2.4 Integrate measures into the developer's process...33
2.4.1 Characterizing the Software Environment..34
2.4.2 Identifying Measurement Opportunities..35
2.4.3 Developing a Software Measurement Plan..36

CHAPTER 3 – APPLYING SOFTWARE MEASURES................................39
3.1 Collect and Process Data...40

3.1.1 Data Sources..40
3.1.2 Reporting and Processing...41
3.1.3 Normalization and Aggregation...42
3.1.4 Data Verification..42

3.2 Define and Generate indicators...43
3.2.1 Basic Indicator Concepts..44
3.2.2 Types of Indicators...47

Page viii

3.3 Analyze Issues..49

3.4 Report Results..57

3.5 Take Action..58

3.6 Life Cycle Application...59
3.6.1 Program Planning..59
3.6.2 Development..61
3.6.3 Software Support..62

CHAPTER 4 - IMPLEMENTING A MEASUREMENT PROCESS....................... 65
4.1 Measurement Implementation Overview..65

4.2 Measurement Implementation Activities..66
4.2.1 Obtain Organizational Support...67
4.2.2 Define Measurement Responsibilities...68
4.2.3 Provide Measurement Resources...70
4.2.4 Initiate the Measurement Process...74

4.3 Using the Measurement Results..75
4.3.1 Program Development Viewpoint...76
4.3.2 DoD Executive Management Viewpoint...77
4.3.3 Process Improvement Viewpoint..78
4.3.4 Lessons Learned...78

PART 2 - SELECTING AND SPECIFYING PROGRAM MEASURES

CHAPTER 1- HOW TO SELECT AND SPECIFY PROGRAM MEASURES......87
1.1 Introduction...87

1.2 Identifying and Prioritizing Program Issues...90

1.3 Selecting the Appropriate Measurement Categories...Error! Bookmark not defined.

1.4 Selecting the Applicable Measures..93

1.5 Specifying Measurement Data and Implementation Requirements...95

1.6 Selecting and Specifying Measures for Existing Programs..98

CHAPTER 2 – DETAILED MEASUREMENT SELECTION AND
SPECIFICATION INFORMATION................................101

2.1 Introduction..101

2.2 How To Use the Measurement Tables..101
2.2.1 Measurement Category Tables...102
2.2.2 Measurement Description Tables...104
2.2.3 General Measurement Specification Table...107
2.2.4 Additional Implementation Guidance..107
2.2.5 Measurement Selection and Specification Tables...108

CHAPTER 3 – MEASUREMENT SELECTION AND SPECIFICATION
EXAMPLE................................173

Page ix

3.1 Program Scenario...173

3.2 Measurement Selection Summary..174

PART 3 - ANALYSIS TECHNIQUES AND EXAMPLES

CHAPTER 1 – MEASUREMENT APPLICATION OVERVIEW........................ 183
1.1 Collect and Process Data..183

1.2 Define And Generate Indicators..184

1.3 Analyze Issues...185

1.4 Report Results...185

1.5 Take Action...186

CHAPTER 2 – INDICATOR REPRESENTATION................................187

CHAPTER 3 – SINGLE INDICATOR EXAMPLES................................191
3.x Indicator Name...192

3.1 Milestone Progress Indicator..194

3.2 Design Progress Indicator..196

3.3 Schedule Variance Indicator..198

3.4 Incremental Build Content Indicator...200

3.5 Effort Allocation Indicator...202

3.6 Staff Experience Indicator...204

3.7 Cost Profile Indicator...207

3.8 Resource Utilization Indicator...209

3.9 Software Size Indicator..211

3.10 Requirements Stability Indicator...213

3.11 Response Time Indicator..215

3.12 Problem Report Status Indicator...217

3.13 Problem Report Aging Indicator..218

3.14 Defect Density Indicator...221

3.15 Software Complexity Indicator..223

3.16 Software Process Maturity Indicator...225

3.17 Software Productivity Indicator...227

3.18 Rework Effort Indicator...230

3.19 Software Origin Indicator..233

Page x

CHAPTER 4 – INTEGRATED INDICATOR EXAMPLES................................ .235
4.1 Design Completion Analysis...236

4.2 Test Completion Analysis...238

4.3 Readiness for Delivery Analysis...240

4.4 Maintenance Analysis..242

PART 4 - ACQUISITION AND CONTRACT IMPLEMENTATION
GUIDANCE

CHAPTER 1 – CONTRACT IMPLEMENTATION GUIDANCE......................... 251
1.1 Contract Planning and Preparation...251

1.2 Proposal Evaluation..Error! Bookmark not defined.

1.3 Negotiations...252

1.4 Contract Modifications...253

CHAPTER 2 – SAMPLE RFP WORDING................................ 255

CHAPTER 3 – ADDITIONAL SAMPLE MATERIAL................................261

PART 5 - SOFTWARE MEASUREMENT CASE STUDIES

WEAPONS SYSTEM CASE STUDY................................ 271

CHAPTER 1 - PROGRAM OVERVIEW................................ 275
1.1 Introduction..Error! Bookmark not defined.

1.2 Program Technical Approach..277
1.2.1 System Requirements Definition and Design Analysis...277

1.2.2 DDG 51 C4I Baseline System Description...278
1.2.3 System Requirements and Design Recommendations...280

1.3 Program Management Approach...282

CHAPTER 2 - PROGRAM PLANNING AND ACQUISITION............................ 285
2.1 Software Program Planning...285

2.2 Software Acquisition...288
2.2.1 Request for Proposal..288
2.2.2 Proposal Evaluation...289
2.2.3 Award...291
2.2.4 Negotiations..293

CHAPTER 3 - DEVELOPMENT PHASE................................ 297

Page xi

3.1 Tracking Development Performance...297
3.1.1 Software Measurement Overview..297
3.1.2 Software Issue Identification and Analysis...298

3.2 Revising The Development Plan...307

3.3 Software Delivery...309

3.4 Epilogue..310

AUTOMATED INFORMATION SYSTEM CASE STUDY................................ ..313

CHAPTER 1 - PROGRAM OVERVIEW................................ 317
1.1 Introduction..317

1.2 Air Force Business Process Modernization Initiative..319

1.3 Program Description..320

1.4 System Architecture and Functionality..322
1.4.1 Current Personnel System...322
1.4.2 Military Automated Personnel System (MAPS)...323

CHAPTER 2 - GETTING THE PROGRAM UNDER CONTROL...................... 327
2.1 Evaluating the Software Development Plan...327

2.2 Revising the Software Development Plan...330

2.3 Tracking Performance Against the Revised Plan..334

CHAPTER 3 - EVALUATING READINESS FOR DELIVERY........................... 341
3.1 Increment 1...341

3.2 Increment 2...345

CHAPTER 4 - INSTALLATION AND SOFTWARE SUPPORT........................ 349
4.1 Increment 1 Installation...349

4.2 Software Support..350

4.3 Epilogue..353

PART 6 - SUPPLEMENTAL INFORMATION

GLOSSARY................................357

ACRONYMS................................365

BIBLIOGRAPHY................................ 367

Page xii

Software Measurement References...367

Government Agency-Specific Software Measurement References..372

PSM RELATIONSHIP TO SPECIFIC DOD POLICIES................................373

PSM PROJECT INFORMATION SUMMARY................................377
Use of Practical Software Measurement...378

Project Contact Information...378

Version Description Summary..381

Page xiii

Page xiv

Software Measurement Principles
• Program issues and objectives drive the

measurement requirements.

• The developer's process defines how the software
is actually measured.

• Collect and analyze low level data.

• Implement an independent analysis capability.

• Use a structured analysis process to trace the
measures to the decisions.

• Interpret the measurement results in the context of
other program information.

• Integrate software measurement into the program
management process throughout the software
lifecycle.

• Use the measurement process as a basis for
objective communications.

• Focus initially on single program analysis.

Page xv

Page xvi

SCOPE AND STRUCTURE OF THE GUIDE

This document, Practical Software Measurement: A Guide to
Objective Program Insight (PSM), is intended to provide a basic
introduction to software measurement for Department of Defense
(DoD) program managers and their technical staff responsible for
implementing a software measurement program. PSM applies to
both weapons systems and automated information systems.
Although the Guide is written from a DoD perspective, the
principles and approach of PSM apply equally well to large scale
commercial and other government software programs.

While it supports DoD and commercial software process and
acquisition standards, PSM does not depend on the adoption of any
specific standard. It provides a flexible framework for integrating
measurement into software management and development
processes. The Guide covers three major topics:

• tailoring the software measures to meet program needs
• applying software measures to obtain insight into

program issues
• implementing a measurement process within an

organization

The Guide addresses program management, with a focus on
program tracking. While the measures used to achieve
management insight and control over a program also are used for
the purposes of process improvement and product engineering,
those topics are not explored except where they are necessary to
attain the program manager's goals. Even in the program
management area, the Guide does not provide an exhaustive
treatment of all possible measures. Instead, it focuses on the most
commonly used measures and techniques.

The Guide is organized into six parts that provide increasingly
detailed treatments of the three topics: tailoring, applying, and
implementing software measures. The six parts are as follows:

Page xvii

• Part 1 - The Software Measurement Process, describes a
basic measurement process which can be applied to any
program. In particular, it focuses on providing the DoD
program manager with visibility into an ongoing
program.

• Part 2 - Selecting and Specifying Program Measures,
provides a series of tables that help the user to select the
set of measures that most cost-effectively address the
program's issues.

• Part 3 - Analysis Techniques and Examples, explains
basic analysis techniques and provides sample analyses.

• Part 4 - Acquisition and Contract Implementation,
provides examples of contract language and work
break-down structures used to specify measurement
requirements in two-party contractual situations.

• Part 5 - Software Measurement Case Studies, illustrate
many of the key points made in the Part 1 of the Guide.
The case studies include two complete examples of
software measurement as applied to typical DoD
programs. One example is a weapon system. The other
is an automated information system.

• Part 6 - Supplemental Information, contains the
glossary, acronyms, bibliography, project description,
and comment form.

The following figure shows how these parts of the Guide address
the elements of the measurement process. Part 1 introduces the
basic concepts, principles, and terminology of PSM. Everyone
should read this part of the Guide. Parts 2, 3, and 4 serve as
detailed references to the program manager and measurement
analyst for the performance of measurement functions. The reader
should familiarize himself with the contents and organization of
these sections, but need not read them in detail until performing the
corresponding function. Part 5 illustrates the application of PSM in
two typical program scenarios. Read at least the case study that
most closely approximates the type of program you are involved
with. Part 6 may be useful for clarification at any time.

Page xviii

Page xix

Action

Issues

Measures

Indicators

Analysis

Information

P RACTICAL
 S OFTWARE
 M EASUREMENT

THE SOFTWARE

MEASUREMENT

PROCESS
PART 1

Part 1 - The Software Measurement Process

Page 2

Part 1 - The Software Measurement Process

Page 3

THE SOFTWARE MEASUREMENT PROCESS

Measurement is a key element of successful management in every
well-established engineering discipline. Practical Software
Measurement presents a proven strategy for tailoring, applying,
and implementing an effective measurement process for DoD
software intensive Weapons System and Automated Information
System (AIS) programs. The objective is to provide the DoD
Program Manager with the software information required to make
informed decisions which impact program schedule, cost, and
technical objectives.

PSM describes software measurement as a systematic, but flexible
process which is an integral part of the overall program
management structure. The PSM measurement process is issue
driven. It is uniquely adapted to meet each program’s specific
information needs. The process is defined around a set of proven
characteristics derived from actual experience on successful DoD
programs. These characteristics, called software measurement
principles, help to make the PSM measurement process an
effective management tool, and not just another program
management “requirement”.

Part 1 of Practical Software Measurement describes the principles
and techniques for tailoring, applying, and implementing an
effective software measurement process. It presents a
comprehensive view of the complete measurement approach in
terms of “what” should be done. Other parts of the Guide
contain detailed “how to” guidance for key measurement activities
and supporting information.

This part of the Guide is organized into four chapters:

• Chapter 1 - Program Management and the
Measurement Process, explains the relationship
between measurement and management, and introduces
the PSM software measurement principles.

• Chapter 2 - Tailoring Software Measures, describes a
sequential approach for tailoring measurement to

Part 1 - The Software Measurement Process

Page 4

directly address program specific software issues and
objectives,

• Chapter 3 - Applying Software Measures, describes a
structured approach for converting software
measurement data into actionable program
management information.

• Chapter 4 - Implementing a Measurement Process,
describes the activities required to get measurement
into practice within an organization.

The PSM measurement process provides the foundation for making
informed “software” program management decisions. It describes
how to define and integrate program measurement requirements,
how to collect and analyze measurement data, and how to
implement the overall process into your organization.

Part 1 - The Software Measurement Process

Page 5

TABLE OF CONTENTS

CHAPTER 1 - PROGRAM MANAGEMENT AND THE MEASUREMENT
PROCESS................................7

1.1 Managing a Software Intensive Program...7

1.2 Overview of Measurement Process...10

1.3 Software Measurement Principles..11
1.3.1 Program Issues and Objectives..13
1.3.2 Developer’s Software Process...14
1.3.3 Low Level Data..14
1.3.4 Independent Analysis Capability...15
1.3.5 Structured Analysis Process..16
1.3.6 Results in Program Context..17
1.3.7 Life Cycle Integration...17
1.3.8 Objective Communications...18
1.3.9 Single-Program Analysis..19

1.4 Measurement Implementation Considerations..20

CHAPTER 2 – TAILORING SOFTWARE MEASURES................................21
2.1 Measurement Tailoring Overview..21

2.2 Identify and Prioritize Program Issues..22
2.2.1 Program-Specific Issues..23
2.2.2 Common Software Issues..24
2.2.3 Identifying Program Issues...25
2.2.4 Prioritizing Program Issues..26

2.3 Select and Specify Program Measures...27
2.3.1 Measurement Category Selection..28
2.3.2 Measurement Selection Criteria..28
2.3.3 Specifying Data and Implementation Requirements..30

2.4 Integrate measures into the developer's process..33
2.4.1 Characterizing the Software Environment..34
2.4.2 Identifying Measurement Opportunities..35
2.4.3 Developing a Software Measurement Plan..36

CHAPTER 3 – APPLYING SOFTWARE MEASURES................................39
3.1 Collect and Process Data..40

3.1.1 Data Sources..40
3.1.2 Reporting and Processing...41
3.1.3 Normalization and Aggregation..42
3.1.4 Data Verification..42

3.2 Define and Generate indicators..43
3.2.1 Basic Indicator Concepts..44
3.2.2 Types of Indicators...47

3.3 Analyze Issues...49

3.4 Report Results...57

Part 1 - The Software Measurement Process

Page 6

3.5 Take Action...58

3.6 Life Cycle Application..60
3.6.1 Program Planning..60
3.6.2 Development..61
3.6.3 Software Support..62

CHAPTER 4 - IMPLEMENTING A MEASUREMENT PROCESS....................... 65
4.1 Measurement Implementation Overview...65

4.2 Measurement Implementation Activities...66
4.2.1 Obtain Organizational Support...67
4.2.2 Define Measurement Responsibilities...68
4.2.3 Provide Measurement Resources...70
4.2.4 Initiate the Measurement Process..74

4.3 Using the Measurement Results...75
4.3.1 Program Development Viewpoint...77
4.3.2 DoD Executive Management Viewpoint...77
4.3.3 Process Improvement Viewpoint...78
4.3.4 Lessons Learned...78

Part 1 - The Software Measurement Process

Page 7

CHAPTER 1 - PROGRAM MANAGEMENT AND THE
MEASUREMENT PROCESS

Measurement is a key element of successful management in every
well-established engineering discipline. This chapter introduces a
flexible strategy for applying software measurement to improve
program management effectiveness for Department of Defense
(DoD) Weapons, and Automated Information Systems (AIS)
systems. Practical Software Measurement presents a systematic
approach that helps a program use software measurement to
address specific program requirements. This chapter introduces nine
basic software measurement principles that guide the
implementation of a measurement process adapted to meet program
needs.

1.1 MANAGING A SOFTWARE INTENSIVE PROGRAM

Much of the capability in today’s DoD Weapons and Automated
Information Systems is implemented with software. In the current
acquisition environment, the ability of the Program Manager to
effectively manage the critical software issues has become an
important factor in a program’s success. With the reductions in
available resources and the use of new software technologies, the
ability to successfully deliver a large and complex software system
is increasingly challenging. New methods are required to help the
DoD program manager plan, monitor and control the software
processes and products which are now a large part of every
program.

In both the DoD and in industry, software measurement has proven
to be an effective tool in helping to manage software intensive
programs. Software measurement, when integrated into the overall
program management process, provides the information necessary
to identify and manage the software issues which are inherent in
every program. It helps the Program Manager identify specific
problems, assess the impacts of these problems on program cost,
schedule, and capability objectives, develop alternative solutions,
and select the best approach for correcting the problems. Software
measurement provides the insight a Program Manager needs to
make the software decisions critical to program success.

Part 1 - The Software Measurement Process

Page 8

Why should a Program Manager measure software? Recent
changes in the DoD acquisition process have emphasized the need
for better software management tools and techniques. Emphasis on
the use of Commercial Off the Shelf (COTS) and reusable software
components, and the implementation of Open System Architectures
(OSA), is changing the way software is acquired and how systems
are developed. New technologies and new development processes
require that the Program Manager have better, and more objective
software information to help make the day to day decisions which
guide the program. The Integrated Product Team (IPT) approach
is an effective technique for managing large systems within the
DoD. The IPT approach requires continuous and effective
communications within the program team to determine the best
solutions to identified problems. Software measurement provides
the objective information which is essential for such
communications.

Software measurement helps the DoD Program Manager do a
better job. It helps to define and implement more realistic software
plans, and then to accurately monitor progress against those plans.
It provides the information required to make key program decisions
and take appropriate action. Specifically, software measurement
provides objective software information to help the Program
Manager:

• Communicate Effectively Throughout The Program
Organization - This is one of the key benefits of
software measurement. Objective software information
reduces the ambiguity which generally surrounds the
software issues on a DoD program. Measurement
allows the software issues to be explicitly identified,
prioritized, and shared at all levels of the organization,
particularly between the Program Manager and the
developer.

• Identify And Correct Problems Early - Rather than
waiting for something bad to happen, measurement
implements a pro-active software management strategy.
As part of the day to day program management process,
measurement focuses on the early discovery and
correction of software technical and management
problems which are more difficult to address later in the
program. Measurement helps the Program Manager
focus on the key software issues throughout the
program life cycle.

Part 1 - The Software Measurement Process

Page 9

• Make the Key Tradeoffs - Every program is
constrained to some degree. Development schedules,
resources, and system capability requirements all have to
be managed together to make the program a success.
With software intensive programs, decisions in one area
always have an impact on the others. Measurement
allows the Program Manager to objectively assess these
impacts, and make the proper tradeoff decisions to best
meet program objectives.

• Track to Specific Program Objectives -
Measurement, better than any other software
management tool, accurately describes the status the
software processes and products. It objectively
represents the progress of the software activities and the
quality of the software products. It helps to answer key
questions such as, Is the development on schedule? and
Is the software ready to deliver?

• Manage to an Optimal Solution - No program ever
has enough time or resources to meet all of the technical
requirements. These constraints are amplified when
changes to funding profiles and delivery dates occur
over the course of a program. Software measurement
helps the Program Manager to address these constraints.
By objectively relating all of the software technical and
management characteristics, measurement can identify
and manage to an optimized set of objectives.

• Defend and Justify Decisions - The current DoD
acquisition environment emphasizes successful program
performance. A decreasing tolerance for failing
programs, coupled with the need to accurately evaluate
the performance of all government initiatives, requires
that the Program Manger be able to effectively defend
and justify his decisions. Measurement helps to do this.
It helps the Program Manager focus on the key software
issues, and provides the data required to explain how
the issues were prioritized and managed.

Like any program management tool, software measurement cannot
guarantee that a program will be successful. It does, however, help
the Program Manager take a pro-active approach in dealing with
the inevitable issues that are part of any software intensive program.
Even more importantly, measurement establishes a basis for
objective communications within the program team. This is
essential when decisions which materially impact the outcome of a

Part 1 - The Software Measurement Process

Page 10

program have to be made quickly, and correctly. Software
measurement helps the Program Manger to succeed.

1.2 OVERVIEW OF MEASUREMENT PROCESS

How does an organization that wants to take advantage of the
benefits of software measurement proceed? A number of specific
measurement prescriptions have been offered to government and
industry organizations with limited success. Rather than propose
another fixed measurement scheme, this guide presents a flexible
measurement approach. PSM views measurement as a process that
must be adapted to the technical and management characteristics of
each program. This measurement process is issue-driven. That is, it
provides information about the specific issues and objectives
important to program success.

As shown in Figure 1-1, the PSM approach defines three basic
measurement activities necessary to get measurement into practice.
The first two activities, tailoring measures to address program
needs and applying measures to obtain insight into program issues,
are the basic subprocesses of the measurement process. The third
activity, implementing measurement, consists of the steps necessary
to establish this measurement process within an organization.

The tailoring activity addresses the selection of an effective and
economical set of measures for the program (for details see Chapter
2) . The application activity involves collecting, analyzing and
acting upon the data defined in the tailoring activity (for details see
Chapter 3). PSM recommends that these two activities be
performed by a measurement analyst who is independent of the
software developer.

Part 1 - The Software Measurement Process

Page 11

Figure 1-1. Basic Measurement Activities

The implementation activity addresses the cultural and
organizational changes necessary to establish a measurement
process (for details see Chapter 4). Implementing a measurement
process requires the support of program and organizational
managers.

The measurement process must be integrated into the developer's
software process. The nature of the developer's process determines
the opportunities for measurement. Because the software process,
itself, is dynamic - the measurement process also must change and
adapt as the program evolves. This makes the activities of
measurement tailoring and application iterative throughout the
program life cycle. The issues, measures, and analysis techniques
change over time.

1.3 SOFTWARE MEASUREMENT PRINCIPLES

Each program is described by different management and technical
characteristics, and by a specific set of software issues. To address
the unique measurement requirements of each program, PSM
explains how to tailor and apply a generally defined software
measurement process to meet specific program information needs.
To help do this, PSM provides nine principles that define the

Part 1 - The Software Measurement Process

Page 12

characteristics of an effective measurement process. These
principles are based upon actual measurement experience on
successful programs.

As shown in Figure 1-2, the software measurement principles are
the foundation for the application of software measurement for:

• Program Management - ensuring that products are
delivered on time, within budget, and are of acceptable
quality.

• Product Engineering - ensuring that products satisfy
customer needs.

• Process Improvement - ensuring that the process
becomes more capable over time.

The same measurement process can be used to provide the
information needed for all three applications, employing different
measures to address differences. However, the Guide only
addresses program management practices, techniques, and tools.

PSM
SOFTWARE

MEASUREMENT
PRINCIPLES

Program
Management

Process
Improvement

Product
Engineering

Figure 1-2. Scope of Software Measurement

Part 1 - The Software Measurement Process

Page 13

The following subsections introduce each of the nine principles.
Experience has shown that a measurement process that adheres to
these principles is more likely to succeed. The following chapters
explain in detail how these principles drive the tailoring, application,
and implementation of the measurement process.

1.3.1 Program Issues and Objectives

Program issues and objectives drive the measurement
requirements. The purpose of software measurement is to help
management achieve program objectives, identify and track risks,
satisfy constraints, and recognize problems early. These
management concerns are referred to, collectively, as issues.

Note that issues are not necessarily problems, but rather they define
areas where problems may occur. An initial set of issues are
identified at the outset of the program. Thereafter, the issue set
evolves and changes as the program progresses.

PSM emphasizes identifying program issues at the start of a
program and then using the measurement process to provide insight
to those issues. While a few issues are common to most or all
programs, each program typically has some unique issues.
Moreover, the priority of issues usually varies from program to
program.

The six basic software issues addressed in this document are as
follows:

• Schedule and Progress
• Resources and Cost
• Growth and Stability
• Product Quality
• Development Performance
• Technical Adequacy

At the start of a program, each of these issues is usually analyzed in
terms of the feasibility of the plan. For example, the program
manager may ask questions such as: Is this a reasonable size
estimate? or, Can the software be completed with the proposed
amount of effort and schedule? Once the program is underway, the
manager’s concern turns to performance. The key questions then

Part 1 - The Software Measurement Process

Page 14

become ones such as: Is the program on schedule? or, Is the quality
good enough?

It is important to note that software issues are not independent. For
example, requirements growth may result in schedule delays or
effort over-runs. Moreover, the impact of the addition of work to a
program (size growth) may be masked, in terms of level of effort,
by stretching out the schedule. Thus, it is important that issues be
considered together, rather than individually, to get a true
understanding of program status.

Focusing measurement attention on items that provide information
about the program's issues also minimizes the effort required for the
measurement process. Resources are not expended collecting data
that may not get used.

1.3.2 Developer’s Software Process

The developer’s software process defines how the software is
actually measured. The definition of a measurement process cannot
be based solely on the objectives of the program manager. To
collect measurement data in the most cost effective and useful
manner, the measurement analyst must consider the software
process of the developer. Program issues identify the information
that the measurement process must derive from the data. The
developer’s software process determines what specific data items
are to be collected and how that is to be accomplished.

One purpose of the measurement process is to provide insight into
the performance of the developer. Thus, the measures collected
must objectively represent the activities and products of the
developer’s software process. Consequently, the data better
represents the software products and processes. Moreover, when
choices are possible, the program manager should select measures
that are normally collected by the software developer. This decision
should also consider the software processes employed by any
subcontractors.

1.3.3 Low Level Data

Collect and analyze low level data. The measurement process
defined in PSM depends on the periodic collection, processing, and

Part 1 - The Software Measurement Process

Page 15

analysis of measurement data rather than the review of pre-
packaged reports. This data includes plans, changes to plans, and
counts of actual activities, products, and expenditures. The
program office should receive data from the developer at a low
enough level of detail to allow for the isolation of problems (errors,
delays, over-runs) by activity and component. This detail is
commonly at the unit and software activity level as defined by the
software architecture and work breakdown structure.

Indicators that address program issues are computed from
measurement data collected by the developer. Most good software
developers can provide a wide range of data items. The specific
data items needed for program management depend on the program
issues. When a proposed measure proves difficult to collect or
doesn’t provide the required information, an effective substitute
may often be found by looking at related measures. Collecting low
level data allows the measurement analyst to perform a variety of
different analyses with the same data. It is a key requirement for
defining a flexible measurement process.

1.3.4 Independent Analysis Capability

Implement an independent analysis capability. The program
manager must have a measurement capability that is independent of
the software developer’s. This requirement is motivated by the
recognition that communication can only occur when both parties
have achieved an understanding of the data under discussion. The
ideal situation involves a government measurement analyst in the
program office who regularly receives low level raw data from the
developer, analyzes it, and presents the results to the program
manager. Alternatively, the independent analyst function may be
provided by an Independent Verification and Validation (IV&V)
contractor, matrix function, Systems Engineering and Technical
Assistance contractor, or another organization independent of the
developer.

Note that without an independent analysis capability, the delivery of
low level data to the program office (see Section 1.3.3) has no
value. Similarly, without low level data the ability of the
measurement analyst to conduct an independent analysis will be
seriously limited.

Part 1 - The Software Measurement Process

Page 16

1.3.5 Structured Analysis Process

Use a structured analysis process to trace the measures to the
decisions. Measurement-based conclusions and recommendations
must be generated in a systematic manner to be accepted as a basis
for management decision-making and action. Key concerns of
management about such information is its traceability and
repeatability. Traceability means that the conclusions and
recommendations are generated from measurement data in a
defined sequence of steps. Repeatability means that analysts
following the same sequence of steps are likely to arrive at the same
conclusions and recommendations. An ad-hoc analysis approach
does not provide management with the confidence necessary to act
on measurement information. For measurement to succeed,
management must become an active participant in the measurement
program and a regular consumer of measurement results.

This Guide describes a systematic method for using detailed data
items to gain insight into high level issues. For example, a high level
software issue is schedule and progress. A realistic question
concerning this issue is whether the program is progressing on
schedule. A complicating factor in assessing this issue is that a
major program contains many different individual activities, where
thousands of software units may be developed. Some of these units
may be ahead of schedule and some behind. Hence, the overall
status of the program is very difficult to determine without some
systematic method for combining quantitative data from all these
software units into information about progress.

A measure is a method of counting or otherwise quantifying some
attribute of a software process or product. Measures alone do not
provide much insight into issues. For example, two major
deliverables of the typical program are software and
documentation. Measuring the amount of software and
documentation completed gives a sense that work is progressing;
however, without comparing the work performed with the plan, we
cannot tell whether the work is on schedule. Measures are used as
indicators of software development and support status. These
indicators provide insight into key program issues.

Part 1 - The Software Measurement Process

Page 17

1.3.6 Results in Program Context

Interpret the measurement results in the context of other program
information. Measurement provides an indication or warning that a
problem may exist. No measurement result by itself is good or bad.
For example, assume that the number of unit designs completed to
date is lower than planned. This situation might occur because the
program is not fully staffed, but while there is still time to add staff
and recover. It might occur while the program is fully staffed
because the developers’ productivity is much lower than planned.
The low score on a progress indicator does not necessarily mean
that the program has a problem. However, it does signal that the
program manager should pay attention to this issue now. He must
collect additional information to evaluate the cause and severity of
the situation to assess its probable impact on program success.
Measurement results must be examined in the context of other
information about the program to determine whether action is
warranted, and what action to take.

Some aspects of, or contributors to, an issue may not easily be
quantified. For example, getting the requirements right may depend
on adequate interaction with the system’s intended user. Even if
production of the requirements document is on schedule it may not
have the right content. Thus, qualitative data about the level of
user interaction must be considered when assessing progress for
this example.

1.3.7 Life Cycle Integration

Integrate software measurement into the program management
process throughout the lifecycle. The issue-driven software
measurement approach described in Practical Software
Measurement applies throughout the software life cycle. For
purposes of this document, we define three major phases: program
planning, development, and software support. Four principal
software activities occur within the development and software
support phases. These are requirements analysis, design,
implementation, and integration and testing. Measurement results
must be provided at appropriate decision points throughout the life
cycle.

Decisions made in one phase or activity affect the results of other
phases and activities. Measurement provides insight into the current

Part 1 - The Software Measurement Process

Page 18

phase, as well as helping to project the consequences of current
actions into later phases. For example, the selection of a specific
software developer during program planning affects the level of
performance realized by the program during development and
software support. Consequently, it is important to adopt a life cycle
perspective when developing a measurement program. Over the
course of the software life cycle, the issues of concern to program
managers may change. However, the basic measurement principles
still apply.

1.3.8 Objective Communications

Use the measurement process as a basis for objective
communications. The measurement process cannot be conducted
by the measurement analyst in isolation. At each step of defining the
measurement requirements and analyzing the measurement data, the
program manager and measurement analyst must communicate with
the developer team. Most decisions that are based on the data will
affect more than one party. A corrective action that is identified and
planned in cooperation with the developer is more likely to succeed
than one that is arbitrarily imposed by the program manager. Figure
1-3 shows the roles of measurement in communication.

The communication described in Figure 1-3 depends on
measurement data that objectively represents the developer’s
software products and processes. The figure highlights the role of
measurement in communication between the program and
developer manager. Both the government and developer
measurement analysts should be analyzing the same data for their
respective managers. While there may be some differences between
the issues of concern to the software program manager and the
software developer, there should also be a high degree of
commonality.

The concept of Integrated Product Design and Development
(IPDD) and the functioning of an Integrated Product Team (IPT)
depend on frequent and unambiguous communication about
technical and management issues among all team members.
Measurement provides an effective vehicle for this.

Part 1 - The Software Measurement Process

Page 19

Figure 1-3. Role of Measurement in Communication

It is important to ensure that all parties use the same data and have
a common understanding of the data definitions. Most data comes
from the developer, so the burden is primarily on the program
manager to understand the developer’s software process and
measures.

1.3.9 Single-Program Analysis

Focus initially on single program analysis. Program success means
meeting program-specific objectives. While the larger organization
(of which the program is a part) may have concerns and objectives
that span multiple programs, this Guide stresses the need to
measure and understand individual programs before attempting to
make cross-program comparisons. The variety of measurement
techniques and definitions used in current practice make more
detailed cross-program comparisons difficult and time-consuming.
The problems are compounded when programs from multiple
organizations are involved. Nevertheless, at several steps in the

Part 1 - The Software Measurement Process

Page 20

measurement process the analyst will need to refer to normative
data and simple models based on multiple programs.

1.4 MEASUREMENT IMPLEMENTATION CONSIDERATIONS

Because the software measurement process is an integral part of the
software process, many members of the organization play a role in
it. Moreover, appropriate resources must be allocated in order for
the measurement process to work effectively.

The most important roles in the software measurement process are
the following:

• Program Manager - identifies issues, interprets and
acts on measurement information. (The acquirer and
developer may both have program managers.)

• Measurement Analyst - specifies measurement
requirements, analyzes and reports results. (The acquirer
and developer may both have measurement analysts.)

• Developer Team - may be a contractor or in-house
developer, collects and packages data for the
measurement analyst. (The Guide uses the term,
developer, to refer to both developers and maintainers.)

• Executive Manager - has several program managers
reporting, periodically reviews program status. (The
acquirer and developer may both have executive
managers.)

Figure 1-3 shows the relationships among measurement analysts
and program managers.

Making sure that all participants in the measurement process
understand and commit to their roles helps ensure that accurate
data is provided that results in constructive communication among
all parties.

Experience from a wide variety of commercial and government
organizations shows that the cost of implementing and operating a
measurement process of the type described in this Guide ranges
from 1 to 5 percent of the program's software budget. This is a
relatively small amount when compared to the cost of conventional
review and documentation based program monitoring techniques.

Part 1 - The Software Measurement Process

Page 21

CHAPTER 2 – TAILORING SOFTWARE MEASURES

The first activity of the software measurement process is to identify
measurement requirements that address program issues. This
activity includes identifying program issues, selecting and specifying
measures, and integrating the measures into the software process.
In some situations, the measurement requirements must be specified
as contractual requirements through negotiation with the software
developer. This Guide recommends an experience-based process
for converting program issues into data requirements. This process
and its component activities are discussed in this chapter.

2.1 MEASUREMENT TAILORING OVERVIEW

This section of the Guide explains how to determine measurement
requirements and develop a program measurement plan. The
objective of the measurement tailoring process is to define the set
of measures that provides the greatest insight at the lowest cost.
The tailoring process focuses effort and resources on getting the
most important program information first. When implementing
measurement on an existing program, give special consideration to
existing data sources and measurement activities.

Measurement tailoring begins with issue identification. On an
existing program the issues should be well understood. Program
issues drive the entire measurement process. This includes the
selection of measures to be collected, the analysis of measurement
results, and management decision-making. Figure 2-1 illustrates the
process recommended in this Guide for developing a measurement
approach that addresses program issues. This process is a detailed
definition of the measurement tailoring activity introduced in Figure
1-1.

The first step is to define the program-specific issues to be tracked.
These are derived by combining a set of common software issues
with program-specific issue criteria. The basic concern in this step
is identifying the issues into which measurement can provide
insight.

Part 1 - The Software Measurement Process

Page 22

Identify and
Prioritize

Program Issues

Figure 2-1. Measurement Tailoring Process

The next step is to define program-specific measures. The measures
are selected by applying measurement selection criteria to
measurement sets that map back to the common software issues.
The basic concern in this step is finding measures appropriate to the
issues.

The basic concern in the final step is integrating the measures into
the developer's process. The software environment, development
approach, and existing measurement mechanisms, if any, should be
considered for their applicability to program needs. The results of
this step are documented in a software development plan. The plan
may be formal or informal.

The following sections explain each of these steps in more detail.

2.2 IDENTIFY AND PRIORITIZE PROGRAM ISSUES

An effective measurement process helps the program manager to be
successful. It provides information the program manager can act
on. This means that measurement must provide information
pertinent to the achievement of program objectives. An objective is

Part 1 - The Software Measurement Process

Page 23

a statement about the cost, schedule, functionality, quality, or
performance that a program must achieve. Objectives may be
directed downward by executive management or defined by the
project manager in consultation with the prospective system user.
Issues are current or potential problem areas that might impact the
achievement of program objectives. Objectives and issues vary from
program to program.

2.2.1 Program-Specific Issues

The basic concept underlying the Practical Software Measurement
approach is that measures should be selected and organized to track
program-specific issues. An issue is anything that might affect the
achievement of program objectives. Issues include risks,
constraints, and any other concerns. Some examples of issues are
growth and stability, schedule and progress, and product quality.
Over-runs or short-falls in these areas usually affect program
success. Aggressive or unrealistic organizational goals might also
be treated as program issues.

Specific issues can be defined at the outset of the program. These
may be identified by considering the basic issues described in this
Guide, as the result of a risk analysis, by relying on past experience,
or by examination of executive management objectives.

Issues may arise during program performance. New or evolving
requirements, changes in technology, and other factors may result
in the identification of derived issues as the program progresses.

Identifying something as an issue does not mean that it is a
problem. An issue is something that might become a problem.
Issues are identified in anticipation of problems, not just after a
problem has occurred. The Practical Software Measurement
approach emphasizes prevention and early detection of problems
rather than waiting for problems to become critical.

Part 1 - The Software Measurement Process

Page 24

2.2.2 Common Software Issues

Experience shows that some issues are basic or common to almost
all programs. If you are not tracking these common issues, then you
probably are not managing all of your program risks. The six basic
software issues are as follows:

• Schedule and Progress - this issue relates to the
completion of major milestones and individual work
units. A program that falls behind schedule can usually
only make it up by eliminating functionality or
sacrificing quality.

• Resources and Cost - this issue relates to the balance
between the work to be performed and personnel
resources assigned to the project. A project that exceeds
the budgeted effort usually can recover only by reducing
software functionality or sacrificing quality.

• Growth and Stability - this issue relates to the stability
of the functionality or capability required of the
software. It also relates to the volume of software
delivered to provide the required capability. Stability
includes changes in scope or quantity. An increase in
software size usually requires increasing the applied
resources or extending the program schedule.

• Product Quality - this issue relates to the ability of the
delivered product to support the user’s needs without
failure. Once a poor quality product is delivered, the
burden of making it work usually falls on the
maintainers.

• Software Development Performance - this issue
relates to the capability of the developer relative to
program needs. A developer with a poor software
development process or low productivity may have
difficulty meeting an aggressive schedule and cost plan.

• Technical Adequacy - this issue relates to the viability
of the proposed technical approach. It includes features
such as software reuse, use of COTS software and
components, and reliance on advanced software
development processes. Cost increases and schedule
delays may result if key elements of the proposed
technical approach are not achieved.

Part 1 - The Software Measurement Process

Page 25

PSM recommends using the six common issues in two ways. First,
reviewing the common issues helps the program manager and
measurement analyst to recognize related issues specific to their
program. Second, the common issues are used to classify program-
specific issues so that they can be mapped into the measurement
selection structure discussed in Section 2.3.

2.2.3 Identifying Program Issues

The common software issues are a good starting point for
identifying program-specific issues. While the common issues apply
to all programs, their priority and exact wording are likely to be
specific to each program. For example, a program that plans to
make extensive use of COTS software may be more concerned with
the schedule and progress of COTS software integration than with
the quality of the COTS software (presuming that the COTS
software was selected based on an evaluation that showed that it
met user requirements.) On the other hand, a safety-critical system
might have quality at the top of its priority list.

In addition to reviewing the six common software issues, the
measurement analyst and program manager should consider other
sources of information about potential program problem areas.
Useful sources of information to consider when identifying issues
include the following:

• Risk Analysis - the results of technical and management
risk analyses should be considered in identifying program-
specific issues. Risk analyses may point to potential
requirements, technology, process, cost, and schedule
issues.

• Program Constraints and Assumptions - the program
plan is based on assumptions about the performance of the
software developer, availability of facilities, etc. Moreover,
schedules and budgets may have inflexible constraints. If
deviations from these assumptions and constraints could

Part 1 - The Software Measurement Process

Page 26

threaten program success, then these areas should be
identified as issues.

• Leveraged Software Technologies - the program plan may
depend on obtaining the benefits of a leveraging software
technology such as reuse, COTS, or advanced programming
languages. If program success depends on obtaining these
benefits, then the effectiveness of this technology should be
identified as an issue.

• Product Acceptance Criteria - the user may impose
stringent milestone or final acceptance criteria on the system
to be delivered. If there is significant doubt about the
system's capability to meet acceptance criteria, advertised
objectives, or other external criteria, then satisfaction of
these criteria should be identified as an issue.

• Experience - the manager's experience with similar past
projects may suggest potential problem areas that should be
identified as issues.

These sources of information, together with the common issues,
help to identify program-specific issues. Each program issue should
be stated in terms that are appropriate for that specific program.
Focus on those aspects of the issue that are most important to the
program. In the earlier example in this section, the schedule and
progress issue was stated in terms of COTS software integration
progress instead of design progress.

2.2.4 Prioritizing Program Issues

Programs may have many issues. Not all issues are equally
important. Issues must be prioritized to determine where to focus
the measurement effort. In general, more data should be collected
and analyzed for important issues than for less important ones.

One useful way to prioritize issues is to classify them according to
the following: 1) how likely that issue is to result in a problem, and
2) how much impact a problem in this area is likely to have on
program success. Three categories of issues, in decreasing order of
importance, are as follows:

Part 1 - The Software Measurement Process

Page 27

• Primary Issues - likely to be problem areas, and the
related problems are likely to have major impacts.

• Secondary Issues - likely to be problem areas, or the
related problems are likely to have major impacts, but
not both.

• Peripheral Issues - not likely to be problem areas, and
the related problems are not likely to have major
impacts.

Most programs cannot afford to track peripheral issues. Of course,
this rating is subjective, so there may be a temptation to reduce
measurement requirements by down-grading the priority of an
issue. That temptation must be guarded against.

As an example, if the software budget is known to be a constraint
from the outset of a program (the probability of a problem is high),
and reducing functionality to fit available resources is not an option
(the problem is likely to have serious consequences) then resources
and cost are almost certain to be a primary issue.

Issues (and their priorities) are dynamic. Additional issues may be
identified once the program is underway. Also, things that were
originally thought to be issues may be recognized as unimportant.
Issues evolve as program concerns evolve. Thus, the measurement
process has to change to keep pace. When defining a new or
derived issue, remember to consider the probability of a problem
arising and its likely impact before deciding to collect any additional
data or regularly tracking the issue.

2.3 SELECT AND SPECIFY PROGRAM MEASURES

Once the program-specific issues have been identified and
prioritized, appropriate measures must be selected to track them.
Many different measures may apply to an issue. However, in most
cases it is not practical to collect all or even most of the possible
measures for an issue. Generally, more measures should be
collected to track primary (high-priority) issues. Identification of
the "best" set of measures for a program depends on a systematic
evaluation of the potential measures with respect to the issues and
relevant program characteristics.

Part 1 - The Software Measurement Process

Page 28

For example, if growth and stability is selected as an issue, then
requirements and software size measures will be needed to track it.
The appropriate measure will depend on the nature of the program.
For example, the language type and application domain influence
the choice of size measure. Automated Information Systems may
use function points to measure size. Weapons Systems are likely to
find lines of code to be more useful.

PSM provides a three-part measurement selection and specification
mechanism. First, issues are reviewed to identify the applicable
measurement categories. Next, measures within the categories are
reviewed for applicability. Finally, the data items and
implementation requirements are specified for the selected
measures.

2.3.1 Measurement Category Selection

A measurement category is a set of related measures. The measures
within a category are derived similarly or address related software
attributes. They provide similar information and answer similar
questions. Figure 2-2 shows the types of questions to which each
measurement category responds.

Use this table (or the corresponding detailed tables in Part 2) to find
the measurement category (or categories) that most closely aligns
with the formulation of the program-specific issue. For example, if
the program-specific issue is "Progress of COTS software
Integration", then the Work Unit Progress category is suggested
because the issue involves a question about the progress of a
specific activity (i.e., integration). If the program-specific issue
was “Availability of Qualified Staff”, then the Staff Profile category
is suggested because our issue concerns not just the number of
staff, but also their skills.

2.3.2 Measurement Selection Criteria

Once a measurement category has been selected, then the
measurement selection criteria discussed below can be applied to
identify the best measures for this program from among those in the
indicated measurement category.

Part 1 - The Software Measurement Process

Page 29

Issue Measurement Category Questions Addressed

Schedule and
Progress

Milestone Performance Is the program meeting
scheduled milestones?

Work Unit Progress How are specific activities
progressing?

Schedule Performance Is program spending
meeting schedule goals?

Incremental Capability Is capability being delivered
as scheduled?

Resources and Cost Effort Allocation Is effort being expended
according to plan?

Staff Profile Are staff assigned according
to plan?

Cost Performance Is program spending
meeting budget goals?

Environmental Availability Are necessary facilities and
equipment available as
planned?

Growth and Stability Product Size and Stability Are the product size and
content changing?

Functional Size and Stability Are the functionality and
requirements changing?

Target Computer Resource
Utilization

Is the target computer
system adequate?

Product Quality Defect Profile Is the software good enough
for delivery to the user?

Complexity Is the software testable and
maintainable?

Development
Performance

Process Maturity Will the developer be able to
meet budgets and
schedules?

Productivity Is the developer efficient
enough to meet current
commitments?

Rework How much breakage due to
changes and errors has to be
handled?

Technical Adequacy Technology Impacts Is the planned impact of the
leveraged technology being
realized?

Figure 2-2. Questions Addressed by Categories

Part 1 - The Software Measurement Process

Page 30

Some of the key criteria to consider when selecting measures
include the following:

• Measurement Effectiveness - how effective is the
measure in providing the desired insight? Does the
measure provide insight that relates to more than one
issue? How difficult and effective have these measures
been on past projects?

• Domain Characteristics - are certain measures more
likely to be used in a given domain? For example,
response time is widely used to measure target
computer resource utilization in AIS systems, while
memory utilization is more widely used in weapons
systems.

• Program Management Practices - can existing
management practices be leveraged to support
measurement requirements? For example, is a
scheduling system in use that provides one or more of
the desired measures?

• Cost and Availability - what data should be readily
available in this program context? How much effort will
be required to extract and package the data for analysis?
Extracting data from electronic sources usually costs
less than manual collection.

• Life Cycle Coverage - does the measure apply to the
life cycle phase under consideration? Does it apply to
multiple life cycle phases?

• External Requirements - has the overall organization
or oversight authority imposed any related measurement
requirements?

• Size/Origin of Software - does the size or scope of the
software justify a larger investment in measurement?
Does this measure make sense for this type of software
(e.g., COTS)?

The tables in Part 2 provide an assessment of 45 different measures
with respect to these criteria. This assessment is based on actual
experience in applying measurement to large programs.

2.3.3 Specifying Data and Implementation Requirements

Once the measures have been selected, the appropriate level of
detail for data collection for those measures must be decided upon.

Part 1 - The Software Measurement Process

Page 31

The frequency and format of data deliveries must also be specified.
Data may be reported less often that it is collected by the developer.
Monthly reporting is common. The tables in Part 2 provide typical
implementation requirements for common measures.

Potential candidates for measurement include all the products to be
delivered by the program and all the processes used by the
developer. Of course, these can be defined and measured at many
different levels of detail (see Figure 2-3). However, unless these
definitions and measures are coordinated appropriately, the
measurement program may not produce meaningful results.

The program’s work breakdown structure (WBS) provides a simple
mechanism for defining and integrating the software activities
(Figure 2-3 shows a typical hierarchy of software activities and
components) and components to be measured. The WBS identifies
all the hardware, software, data, and other products and services
that must be delivered to complete the system. (See Part 4 for
sample WBSs for AIS and weapons systems.) The WBS is used to
break a project down into small tasks. Each of the small tasks is
called a work package. Typically, each work package has a
schedule, effort allocation, and quantity of work associated with it.
Errors and rework may be by products of implementing a work
package.

A work package could correspond to something as large as
developing an entire Computer Software Configuration Item
(CSCI) over a period of years or as small as testing a single unit
within one week.

Part 1 - The Software Measurement Process

Page 32

UNIT/OBJECT

CSCI

SYSTEM
BUILD

PROGRAM

REQUIREMENTS
ANALYSIS

DESIGN

IMPLEMENTATION

INTEGRATION &
TEST

SOFTWARE
ACTIVITY VIEW

SOFTWARE
COMPONENT VIEW

Figure 2-3. Activity and Component Aggregation

Most programs define work packages for each major activity (i.e.,
requirements analysis, design, implementation, integration and
testing, and rework) for each CSCI. However, to adequately
address specific program issues it may be necessary to collect one
or more types of data at a more detailed level. Some of the factors
that help define the appropriate level of data collection are as
follows.

• Requirements and size data are normally tracked at least
at the CSCI level. Consider tracking size at a lower level
if the CSCIs are large.

• Progress is normally reported at the level of major
activity (e.g., design). Consider tracking at the level of
subactivities if the schedule is a long one.

• Keep data from subcontractors separate, especially if the
subcontractors have significant software development
responsibility, or a different development process.

• Maintain separate counts of size for each language type,
including 4GLs and application generators, unless the
languages are very comparable (for example, Fortran
and Algol).

• Maintain separate counts of size, effort, and problem
reports for each category of new development, reuse,
and COTS software, especially if program success
depends on realizing some specific benefit from these
approaches.

Part 1 - The Software Measurement Process

Page 33

• Keep separate counts for each priority category of
problem report, especially if the program maintains a
large backlog of problems.

All data collected must be consistent with the WBS. Different types
of data may be collected at different levels of detail, but each must
roll up into the same product elements. For example, it is hard to
analyze productivity when effort data is collected using categories
that do not map into the work packages against which size is
measured. When defining a measurement program, the ability of the
developer’s cost accounting system to flexibly support detailed
effort and cost reporting are important considerations.

In determining the proper level of detail for the measurement data
to be collected, the measurement analyst must balance the cost of
data collection, data processing, and analysis against the need for
detailed insight into program issues. More detailed data allows
greater flexibility for analysis in terms of defining new indicators
and localizing the source of potential problems detected with the
data. However, a greater level of detail also implies a greater
volume of data and a greater cost to the measurement program.
Nevertheless, more detailed data should be sought to track those
issues defined to be most important. All of these recommendations
for selection of measures and level of detail must be tempered with
an understanding of the developer’s process.

2.4 INTEGRATE MEASURES INTO THE DEVELOPER'S PROCESS

Up to this point the measurement selection process has largely been
driven by "what" we need to know as defined by the issues. Now
we need to look at "how" the measurement process will actually
function with the program structure. The data readily available from
the developer may not map exactly into our ideal measurement
requirements as defined thus far.

The measures and implementation requirements selected in the
preceding step form the basis for negotiations between the program
manager and the developer about the specific data elements to be
provided for analysis. This negotiation may be accomplished via a
formal contracting process, or via a less formal agreement. The
result of this step is a definitive statement of the measurement
approach to be followed, often documented in an informal

Part 1 - The Software Measurement Process

Page 34

measurement plan, or incorporated into the program management
plan.

Adjusting the Program Manager’s measurement requirements to the
developer's process involves three tasks:

• Characterizing the software environment
• Identifying measurement opportunities
• Developing a software measurement plan

During the course of performing these tasks, the developer may
propose changes to the program measurement requirements to
better integrate the measures into the software process. The final
plan is based on both the initial requirements and agreed-upon
changes.

Part 4 of the Guide provides sample contract wording that helps
implement these steps. A “contract” may be a formal contract, a
Memorandum of Agreement (MOA), an Inter-Service Support
Agreement (ISSA), or some other written agreement. The technical
concepts discussed in this Guide are applicable to whichever type of
contract is used.

The tasks required to integrate the measurement requirements into
the software process are discussed below.

2.4.1 Characterizing the Software Environment

The developer’s process has a major impact on the cost and
effectiveness of a software measurement program. One basic
purpose of the measurement program is to provide insight into the
developer’s process. Thus, it is important that the measures
accurately represent the software process being used and the
products being built. Some key factors to consider are as follows:

• The life cycle model or activity structure used to define
the developer’s process

• Product structure, including builds and releases defined
by the developer

• Current measurement activities employed by the
developer

• Software technology, including programming language,
design language, etc.

Part 1 - The Software Measurement Process

Page 35

• Planned source of software (COTS, GOTS, reuse, etc.)
• Management, review, testing, and inspection practices

employed by the developer
• Engineering and management standards to be applied

Whenever possible, take advantage of the developer’s current
practices and existing data collection mechanisms. Avoid imposing
new measurement requirements. Use the program's WBS, including
product structure and activities, as the basis for measurement.

To the extent that the activities of the developer’s process are well-
defined, measuring them will provide useful information. An ad-hoc
or ill-defined process makes it difficult to tell exactly what is being
measured.

For many issues, the data available changes across life cycle
activities. For example, during the software implementation stage,
progress may be measured in terms of units designed and coded.
During testing, progress may be measured in terms of tests
attempted and tests passed. The measurement analyst must ensure
that relevant measures and indicators are provided throughout the
program’s life cycle, making substitutions as appropriate.

Before measurement requirements are finally negotiated, the
measurement analyst should use his or her understanding of the
developer’s process, as well as direct feedback from the developer
to modify the target measurement set. Giving appropriate
consideration to the developer’s process helps to ensure that useful
data is provided with the lowest impact and cost.

2.4.2 Identifying Measurement Opportunities

During measurement planning a high priority should be given to
finding and taking advantage of any measurement mechanisms
already operating within the development organization. This is
especially important when installing measurement on an existing
program. Give special attention to databases and tools supporting
the following functions:

Part 1 - The Software Measurement Process

Page 36

• management/scheduling
• financial/earned value/timecard
• planning/estimating
• configuration management
• problem tracking
• action item tracking
• inspection results
• development tools (e.g. CASE)
• measurement database

Extracting and delivering data from electronic sources such as these
is usually more cost effective than manual (or paper forms-based)
collection methods.

Most actual software data will come from the developer. However,
initial planning data often is produced by the program management
office. The source of the data will affect choices about the
frequency and form of delivery.

As a result of characterizing the program environment and
identifying measurement opportunities, changes to the measurement
requirements previously defined may be proposed. Moreover, new
issues may be identified that result in changes at the issue level as
well. Thus, the measurement selection process is iterative. This
iteration may be managed via a formal contracting process, a less
formal agreement mechanism, or internal policy.

2.4.3 Developing a Software Measurement Plan

The final task in measurement selection is to develop a software
measurement plan. The software measurement plan may be formal
or informal. A formal plan may be produced as a separate
document, but is commonly incorporated into the program's
software management, development, or maintenance plan. Some
elements of the plan may be specified in the Computer Life Cycle
Management Plan. Part 4 provides additional detail on preparing a

Part 1 - The Software Measurement Process

Page 37

formal plan as part of a contracting process and a sample
measurement plan outline.

The plan is the result of adjusting the program manager’s
requirements to fit the developer’s process.

Regardless of the formality of the measurement plan, it should
incorporate the following information:

• Issues and measures selected.
• Identification of data elements - consolidate the data

elements required for all measures into a single list.
Measures frequently share data elements.

• Data definitions - provide a complete and unambiguous
definition of each data item. The checklists contained in
the SEI Core measures may be helpful in this regard.

• Data sources - identify the specific sources (e.g.,
person, tool, report, activity) for all data items.

• Level of measurement - determine the level of detail at
which data items are to be collected and delivered for
analysis.

• Aggregation structure - define the hierarchy by which
the low level data items will be combined to provide
system, build, and program-level views. This structure
should parallel the WBS.

• Frequency of collection - specify how frequently data
items are to be collected and delivered for analysis.
Include plans and replans as well as actual data. This is
typically monthly.

• Method of delivery - define the method for providing
access to the data (e.g., common database, electronic
media).

• Communication and interfaces - identify the points of
contact for all data sources, reports, and requests for
clarification.

• Frequency of analysis and reporting - determine the
reviews and reports via which measurement results will
be provided to the program. These should occur on a
monthly or quarterly basis.

Most large programs will require the development of a unique
software measurement plan. However, some organizations may be
able to define a software measurement plan that covers many
projects. This implies that a common measurement set can be

Part 1 - The Software Measurement Process

Page 38

defined for the organization. A common measurement set only
makes sense for programs that share the following traits:

• similar software issues
• common process (standards, practices)
• stable technology (languages, tools, platforms)
• similar application domains

Imposing a standard measurement set in situations where these
conditions are not satisfied may burden the program with
unnecessary measurement requirements while missing important
issues that should be tracked.

A common data set or normalization scheme may be necessary for
other types of analysis to support process improvement and
business purposes. However, this Guide focuses on single program
analysis. Recording the characteristics which drive decisions in the
measurement selection process is important for figuring out how to
normalize data for these purposes later.

In addition to the program-specific measurement needs discussed in
this Guide, other users may have other valid needs that the
program's measurement process must address. These other users
include executive managers performing an oversight function and
software engineering process groups working on process
improvement issues. Most of the data needed by these other users
originates from the program. Getting good data for executive
review and process improvement depends on establishing an
effective program-level measurement program.

Consider measurement requirements from all sources together
when developing a program's measurement plan. This will enable
the measurement analyst to minimize the redundancy and
inefficiency that can result from multiple data collection efforts.
Focusing on measures and analyses that benefit multiple users helps
to maximize the value of the measurement process implemented.

Part 1 - The Software Measurement Process

Page 39

CHAPTER 3 – APPLYING SOFTWARE MEASURES

This chapter explains how the measurement plan that results from
the tailoring process described in Chapter 2 is applied during the
program planning, development, and software support phases of the
program life cycle. This chapter discusses the collection of the data,
generation of indicators and reports, analysis of results, and the use
of measurement information to support program management
decisions and actions. Management support and participation
throughout these activities are essential to the success of a
measurement program. This chapter also describes how the focus
of analysis changes across the program life cycle.

Figure 3-1 shows the major steps by which data is collected and
converted into information which provides a basis for action by the
program manager. This figure expands upon the measurement
application subprocess defined in Figure 1-1. During measurement
application (Figure 3-1) the specified measures are collected and
analyzed to provide feedback on the issues. During this activity,
questions may be raised and new issues may be identified, causing
the process to iterate.

Figure 3-1. Measurement Application Process

Part 1 - The Software Measurement Process

Page 40

3.1 COLLECT AND PROCESS DATA

Collecting and understanding the data is the first step towards
analyzing program issues. Getting good data is the foundation of
any measurement program. Almost all data originates with the
software developer, including planned, actual, and historical data.
Some of the concerns associated with data collection are the
sources of data, reporting frequency and format, normalization and
aggregation, and verification.

As explained in Chapter 2, the data collected should reflect the
nature of the software product and the developer's process. Be
sure to include all contractors and subcontractors in the data
collection effort. More mature developers are likely to be able to
provide more types of data at greater levels of detail than less
mature developers.

3.1.1 Data Sources

Software data comes from many sources. The program’s software
development plan is a primary source. This plan typically contains
the budgets and schedules against which progress and expenditures
will be compared. Data must be collected from both initial plans
and later replans (including incremental changes to plans). As the
program evolves, the corresponding actual data on problems,
progress, size, and effort will become available.

Many sources of data lie within the developer’s process. Software
problem counts and severities can be obtained from problem
databases, of properly structured. Counts of hours expended by
activity can be obtained from financial management records. (The
capability of the developer’s financial management system may limit
the measurement analyst’s ability to get detailed effort data.)
Progress data usually comes from the detailed work plans
maintained by technical managers and team leaders. Use of a
project management tool facilitates data collection.

Part 1 - The Software Measurement Process

Page 41

Counts of software units, lines of code, and changes to software
and documents usually can be obtained from configuration
management records and reports. Alternatively, a source code
analyzer may be used. Product information, such as counts of lines
of code or pages, can also easily be captured by recording them
during inspections. Note that in all these cases, the most efficient
method of collecting the desired data depends on the nature of the
software developer’s process.

3.1.2 Reporting and Processing

Data may be collected by the developer more frequently than it is
reported to the program manager. The most common reporting
intervals are monthly during requirements analysis, design, and
implementation, then weekly during integration and testing.
Integration and test data typically is reported more frequently
because this period is relatively shorter. In any case, the reporting
interval should not be longer than quarterly. Data reported less
frequently is stale, and the opportunity for action has often passed
by. Generally, analysis should occur soon after each delivery.

The developer should supply low level data directly to the program
manager. Data should be provided in both hard copy and electronic
form. When developing the schedule by which the developer
provides data to the program manager, remember to allow adequate
time for analysis between data delivery and the date the analysis
results are required. The lag between data collection and reporting
should be kept to a month or less.

One approach that helps assure timely provision of low-level data is
to provide the measurement analyst with on-line access to the
developer's software engineering database, if that database contains
the necessary information.

Part 1 - The Software Measurement Process

Page 42

3.1.3 Normalization and Aggregation

During data analysis, it may be helpful to combine or compare
measures from different activities or CSCIs implemented in
different languages. Normalizing data requires the definition of
conversion rules or models. For example, to compare the
productivity of different developers, it may be necessary to use a
model that takes into account the effect of program schedule and
size on productivity. Normalization has to be performed carefully.
Any rules or models used must be validated with historical data.

The measurement analyst does not want to report all data to the
program manager at the detailed level at which it is received.
Consequently, it is often necessary to combine raw data from low
level components into higher levels. Aggregating data requires the
definition of the relationships among the measured objects, such as
is provided by a WBS. For effective communication to occur, both
the developer and program manager must understand and use the
same aggregation and normalization rules.

3.1.4 Data Verification

Getting useful measurement results depends on feeding good data
into the analysis and reporting process. Data verification must
consider both the accuracy of the data as it is recorded, as well as
the fidelity with which it is transmitted. All data should be identified
with its date of collection and source. Such identification helps to
line up data with program events. Apply configuration management
procedures (such as versions and dates) to electronic deliveries of
datasets. This audit trail should be tested periodically to assess the
integrity of the data collection process.

Once the data has been processed into a database or other storage
medium, additional checks should be made. Compare a sample of
values from the input data with the database contents. Previous
values that are not expected to change should also be compared
with current values. Additional checks may be automated. These
include type checks, range checks, and completeness checks.

Developing and disseminating clear definitions of the desired data
items helps ensure consistent data. Even seemingly obvious terms,
like lines of code and staff-months of effort, need to be defined. For
example, lines of code may be interpreted to mean all physical lines,

Part 1 - The Software Measurement Process

Page 43

only non-comment lines, executable statements, or one of dozens of
other variations. Even staff-months is ambiguous. The average
number of hours worked per month varies from organization to
organization. The categories of labor reported may also differ.

Data verification is complicated by the fact that some of the
assumptions underlying the measurement program can change
during the program life. Aggregation structures, product
components, processes, and even definitions of measures may be
updated as the program evolves. Sometimes, estimates and actuals
are measured differently. Consider these possibilities during the
data verification step.

You should be aware that even valid software engineering data is
likely to be "noisy". Software engineering is a human-intensive
activity; things seldom go exactly as planned. Because performance
varies from week to week, you should be wary of “actual” data that
exactly matches the “plan”.

Any concerns about, or inconsistencies in, the data should be
resolved via communication with the developer. Missing data,
large changes in values, changes in the data structure should always
be discussed to ensure that the measurement analyst understands
the data.

3.2 DEFINE AND GENERATE INDICATORS

The next step after collecting and verifying the data is to define and
generate the indicators that are the basis for analysis, reporting, and
action. An indicator is a measure of combination of measures that
provides insight into a software issue or concept. Most of the
indicators discussed in PSM compare two measures, usually
planned values versus actual values. The relationship between the
two measures often can best be communicated graphically.

The measurement approach advocated in this Guide stresses the
collection of low level data from which many different indicators

Part 1 - The Software Measurement Process

Page 44

can be constructed. Such an approach allows a greater flexibility in
analyzing issues and adapting to new issues as they arise. A
measurement process that is based on the periodic delivery of only
pre-defined graphs and tables does not have this flexibility.

Note that while some measures are closely associated with specific
indicators, the PSM concept of an indicator helps the analyst to
combine measures in many different ways.

Three sets of indicators typically are produced for each analysis
cycle:

• Pre-defined indicators that are produced for every
analysis cycle.

• Variations of the pre-defined indicators that provide
additional detail to help localize problems.

• New indicators that respond to questions raised by the
program manager or software measurement analyst
during the current analysis cycle.

Most data necessary for producing these indicators should be
supplied by the software developer. Most database and spreadsheet
tools have the capability necessary to produce graphs like those
discussed in this Guide. Usually, only summary reports are
provided to the program manager on a regular basis, but detailed
analyses must be studied by the measurement analyst and be
available for discussion with the program manager if needed.

Good graphic displays of indicators facilitate communication of
measurement results. Hence, graphs must not be too complex. Each
graph should convey a clear message. It is better to have many
graphs than many messages on one graph, especially when getting
started. Part 3 of the Guide provides guidelines for developing
effective graphs.

3.2.1 Basic Indicator Concepts

Issues usually cannot be measured directly. It is difficult to find a
single measure that captures everything important about an issue.
Thus, we must rely on (usually multiple) indicators. The indicators
discussed in PSM are analysis tools, often represented as a graph or
a table, that give insight to a particular issue. Indicators give

Part 1 - The Software Measurement Process

Page 45

warnings of problems associated with issues. An important issue
may be tracked with several indicators.

In most cases, insight into an issue cannot be obtained simply by
collecting current data. That data must be compared with some
notion or expectation of what the current data should be. That
expectation may not be explicitly stated prior to the start of the
measurement process. It may be a rule of thumb such as, "error
rates usually go down as testing progresses". Since in the real world
we seldom get exactly what we expect, we also need criteria to
decide whether or not the difference between actual data and our
expectation is sufficiently different to cause concern. The
measurement indicators used in PSM generally consist of three
parts:

• Actual value of a measure or combination of
measures - actual current data such as hours of effort
expended or lines of code produced to date.

• Expected value of a measure or combination of
measures - planned value, quantitative objective,
baseline, or historical value such as planned milestone
dates, target level of reliability or required productivity.

• Significance criteria - rules of thumb and statistical
techniques used to assess the difference (often called
variance) between planned (expected) and actual
(measured) values

Data provided by the developer will include planned and historical
values, as well as corresponding measured actual values. During
program execution, new indicators can often be defined by
organizing collected measures in different ways.

Indicators can be used for predictive as well as for assessment
purposes. Thus, a given indicator may be regarded from two points
of view, based on how it is used:

• Leading Indicators - predict the future situation with
respect to an issue. For example, requirement changes
may be a leading indicator for developer effort. Changes
in requirements usually result in a need for increased
effort.

• Current Indicators - describe the current situation with
respect to an issue. For example, staffing level describes
the developer effort currently being expended by the
program.

Part 1 - The Software Measurement Process

Page 46

Note that the use of an indicator as leading or current is with
respect to a specific issue. A given indicator may be current with
respect to one issue and leading with respect to another issue. In
order to define a leading indicator, the relationship between the
activities or products measured by the leading indicator and those
measured by current indicators must be understood.

Figure 3-2 illustrates the cascading relationship of typical software
problems. Requirements changes drive increases in size. The
increased size requires additional effort. The additional effort leads
to schedule delays. Schedule pressure can cause a product to be
delivered that is not fully tested and has documented problems that
have not been corrected. These problems represent rework that
requires additional effort in future releases or during maintenance.

These problems correspond to issues for which indicators can be
defined. The earlier the situation described in Figure 3-2 is
recognized and addressed, the greater the chances of program
success. Thus, a program for which schedule was identified as a
primary issue might also benefit from collecting effort and size
measures as potential leading indicators of schedule.

Figure 3-2. Typical Pattern of Software Development Problems

During analysis, each issue should be considered from two
perspectives, feasibility and performance. Feasibility deals with the

Part 1 - The Software Measurement Process

Page 47

accuracy and realism of plans, estimates, or assumptions associated
with an issue. For example, an assessment of the feasibility of
funding and personnel resources for a program must consider
whether the proposed work can be accomplished with the proposed
resources. Performance deals with adherence to plans, estimates,
and assumptions associated with an issue. For example, an
assessment of the funding and resources performance of a program
must consider whether expenditures, such as personnel effort,
conform to plan.

3.2.2 Types of Indicators

Indicators may also be classified into two general types, trend-based
and limit-based, in terms of how they are graphed and analyzed.
The primary distinction between the two is whether the expectation
(target or plan) is relatively constant or changes over time. Both
types of indicators should be constructed using raw data rather than
percentages. Percentages are easily manipulated. The following
subsections explain these indicator types in more detail.

3.2.2.1 Trend-Based Indicators

Trend-based indicators are used when the expected or planned
value changes regularly over time. Feasibility analysis of a trend-
based indicator involves determining whether the rate of work or
other performance implied in the trend is actually achievable.
Performance analysis consists of determining whether the actual
program trend corresponds to the planned trend. Figure 3-3 shows
an example of a trend-based indicator. In this example, a different
goal or target for software work units completed has been set for
each week. This is the program’s implementation plan. Actuals are
plotted on the same figure. The example of Figure 3-3 also shows
an update to the plan due to size growth, an increase in the number
of work items.

Part 1 - The Software Measurement Process

Page 48

Work Unit Progress

0

20

40

60

80

100

120

140

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Date

Plan 1
Plan 2
Actual

Program: PSM Data as of 31 Jul 95

SDR

Figure 3-3. Trend Based Indicator Example

In addition to planned versus actual indicators, trends are used to
represent work backlogs like problem reports. The amount of work
to be completed (problem reports to be fixed) is not known in
advance, so the plan (or target) is developed week by week as
problems are discovered.

3.2.2.2 Limit-Based Indicators

Limit-based indicators are used when the expected or planned value
remains relatively constant. A change in the limits or targets
associated with these indicators usually involves a major replan or a
change in expectations for the program. Feasibility analysis of a
limit-based indicator requires determining whether the proposed
limits are reasonable and soundly-based in fact. Performance
analysis consists of determining whether the actual program
performance trespasses its established bounds.

Limit-based indicators include measures for error rates, computer
utilization targets, and productivity goals. Figure 3-4 shows an
example of a limit-based indicator for software size. As long as the
actual size remains within the planned limit (initial estimate plus
acceptable error), performance is acceptable. Whenever actual
values exceed the limit(s), the cause should be investigated.

Part 1 - The Software Measurement Process

Page 49

Software Size

200

250

300

350

400

450

Jan 93 Mar May Jul Sep Nov Jan 94 Mar
Date

Current
Estimate

SSR SRR SDR TRR SCT

Program: PSM Data as of 28 Feb 94

Initial Esitimate

Esitimate Plus Error

Figure 3-4. Limit-Based Indicator Example (Software Size)

Figure 3-3 in the preceding section also provides an example of a
potential relationship between a limit-based and a trend-based
indicator. The change in total work items is a change to a limit (the
amount of work to be performed) which must be reflected in an
update to the trend plan.

3.3 ANALYZE ISSUES

During this step, the indicators generated in the preceding step go
through a systematic analysis process. This process results in
assessment of the status of the program relative to the known
issues. As shown in Figure 3-1, this analysis is based on both
measurement and other program information. Only the integration
of quantitative and qualitative data produces true program insight.
The results of the analysis also are the basis for identifying new
issues and taking corrective action on known issues.

The measurement process must be able to respond quickly to the
information needs of program managers. Typical questions asked
by program managers include the following:

• Can I trust the data?
• Is there really a problem?
• How big is the problem?
• What is the scope of the problem?

Part 1 - The Software Measurement Process

Page 50

• What is causing the problem?
• Are there related problems?
• What should I expect to happen?
• What are my alternatives?
• What is the recommended course of action?
• When can I expect to see the results?

The measurement process must generate the answers to these
questions.

During each analysis cycle, two types of analyses should be
performed. Feasibility analysis is conducted to determine whether
the software developer's plans and targets are achievable.
Performance analysis is conducted to determine whether the
developer is meeting the plans, assumptions, and targets. Sections
3.3.2 and 3.3.3, respectively, discuss feasibility analysis and
performance analysis in more detail. The next section describes the
general process in which either type of analysis can occur.

3.3.1 Basic Analysis Process

Analysis of measurement data tends to be a highly individualistic
activity. However, the credibility and completeness of the analysis
are enhanced when the analyst follows a repeatable process.
Analysis results are more likely to be useful and the program
manager will have a higher degree of confidence in them. This
Guide will present the analysis activity from three perspectives: 1)
tasks of steps that answer the Program Manager’s questions, 2)
analysis techniques (i.e. feasibility and performance) used during
these tasks, and 3) life cycle phase. Figure 3-5 shows these
perspectives.

The iterative nature of the analysis process at each step complicates
the achievement of a thorough and repeatable analysis. The analyst
may revisit earlier steps or jump ahead temporarily. However,
following a basic sequence of tasks helps to ensure the effectiveness

Part 1 - The Software Measurement Process

Page 51

of both feasibility and performance analysis. These tasks are as
follows (see also Figure 3-5):

• Identification of Problems
• Assessment of Problem Impact
• Projection of Outcome
• Evaluation of Alternatives

Several of these steps will involve the collection of additional non-
measurement data. Decisions cannot be based solely on software
measurement data. Context information may be collected via
developer feedback, audits, joint technical and management
reviews, document reviews, and risk analyses. Gathering and
integrating appropriate non-quantitative data is essential to the
successful application of measurement.

Other
Program

Information

New
Issues

Indicators

Results

Management
Questions

Figure 3-5. Issue Analysis Activities

3.3.1.1 Identification of Problems

Problems are recognized by detecting a difference between plans
and actuals or between plans and other baselines. If the difference
between these values exceeds the threshold of risk acceptable to
management, then the situation should be investigated. Consider
not just the absolute magnitude of the difference but also the trend.
If a variance has been growing steadily larger month by month, it
should be investigated even if it has not yet exceeded the threshold.

Part 1 - The Software Measurement Process

Page 52

Both feasibility and performance analyses may be performed using a
single indicator technique, one indicator at a time. However,
because issues are not independent, we must also apply an
integrated analysis technique using multiple indicators
simultaneously. For example, a problem that should show up in one
issue area (e.g., effort increases) may be disguised by an
accommodation made in another issue area (e.g., schedules slip so
that the increased effort does not result in a detectable increase in
staff level).

These interactions among issues also suggest that a measurement
program should never adopt a single issue focus. Single indicator
analysis usually is performed first during the analysis cycle,
followed by an integrated analysis.

Sometimes inconsistent, incorrect, or inaccurate data may cause an
indicator to suggest a problem when none really exists. Discuss all
data anomalies and other potential inconsistencies with the software
developer. However, when multiple indicators point to a problem,
it's usually not just a data problem.

3.3.1.2 Assessment of Problem Impact

The first step in assessing the impact of a problem is to localize the
source of the anomaly detected and evaluate its scope. This may
require additional focused data collection efforts or audits, but most
measurement requirements should be satisfied with the existing
data.

Sometimes a substantial difference between planned and actual
values may be caused by outliers, which are values that don’t
appear to be consistent with the other data collected. For example,
the average cyclomatic complexity of a component may be
significantly higher than that of the rest of system due to one or two
unusually complex units. Be careful to not make judgments about
the whole system based on these outliers.

Once the source and scope of the problem has been identified the
magnitude of its potential impact on program success can be
assessed. The magnitude of the impact is not always proportional to
the size of the difference between planned and actual. Sometimes, a
small problem that arises in one issue area (e.g., size growth) may

Part 1 - The Software Measurement Process

Page 53

have a ripple effect on another issue (causing, for example, effort
over-runs). Rippling multiplies the effect of a problem.

Also consider the impact of any identified problems on program
risk. A problem that does not by itself pose an obstacle to program
success, but which increases the program's risk level should be
managed carefully. A significant impact to an item on the critical
path should always be of concern.

3.3.1.3 Projection of Outcome

Assessing the current impact of a problem helps to understand the
probable outcome of the program. However, to get a complete
picture of the significance of the problem its impact must be
projected into the future. Eventual program outcomes can be
predicted by projecting current trends as straight lines or by
employing more sophisticated parametric estimation models for
effort, size, and schedule.

Use these projection techniques to investigate the effects of changes
in assumptions on program outcomes. Exploring these "what if"
scenarios helps the measurement analyst to understand which
factors most strongly influence program outcomes. Throughout
these studies, keep in mind the imprecision inherent in such
projections. Small differences in predicted outcomes are probably
meaningless.

3.3.1.4 Evaluation of Alternatives

The information assembled via the preceding steps should enable
the measurement analyst to evaluate alternative actions and make a
recommendation to the program manager. The underlying problem
and potential actions should be reviewed with the developer and
modified as appropriate based on the developer’s feedback.
Consider the raw data, indicators, and context information about
the program and recent events in reaching conclusions. Don't reach
conclusions based on a single item of evidence, whether
quantitative or subjective.

In deciding on a specific recommendation, consider the nature and
effectiveness or impact of previously taken corrective actions.
Avoid recommending a corrective action that will conflict with

Part 1 - The Software Measurement Process

Page 54

previous actions or a corrective action that has already failed to
work in a similar situation.

One result of the analysis process may be to identify a new issue
and recommend the collection of additional data to track it. This
will require the program to revisit the measurement tailoring
process described in Chapter 2.

3.3.2 Feasibility Analysis

The four analysis steps just described can be performed to assess
the feasibility of program plans. A feasibility analysis should be
conducted with respect to an issue during the initial planning
activity and at all subsequent replans. A program’s failure may be
the consequence of an overly ambitious plan as much as of poor
performance.

The feasibility of a plan depends on the accuracy of assumptions
and data as well as the effectiveness of the planning process. Some
of the key considerations in determining the feasibility of a plan are
as follows:

• Basis for estimate - How completely was the problem
analyzed? How good is the historical data (e.g., past
productivity)? Are the measures well-defined?

• Realism of adjustments - Do any adjustments for
unique product or process factors (e.g., software
development environment) reflect likely impacts rather
than optimistic hopes?

• Confidence in process - Has the process that
determines the plans or targets been used before? Did it
give good results?

• Changes in assumptions or environment - Have any
significant changes occurred in the underlying
assumptions or program environment which might affect
the validity of the plan?

• Comparison of program parameters - Are the
performance levels or targets (e.g., productivity, quality)
in the same range as those that have been achieved on
similar programs?

Each part of the plan (such as size, schedule, staffing profile) may
pass the tests above, but the plan may prove to be infeasible when
considered as a whole. Figure 3-6 shows an overlay of a milestone
(Gantt) chart on a staffing profile. (A similar effect could be

Part 1 - The Software Measurement Process

Page 55

obtained by laying the charts side by side.) Note that the highly
parallel design and implementation activities are scheduled during
an interval of decreasing staffing. Thus, while the overall schedule
may be adequate and the overall staffing sufficient, the allocation of
staffing over time does not match the schedule. Following this plan,
the program is sure to experience some periods where the staff
exceeds the scheduled work and other periods where the staff is
insufficient for the scheduled work.

Schedule Versus Staffing

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Requirements

Design - 1

Design - 2

Design - 3

Implementation - 1

Implementation - 2

Implementation - 3

Test and Integration

Date

0

20

40

60

80

100

120

140

160

N
um

nb
er

 o
f S

ta
ff

Actual Plan

Program: PSM Data as of 30 Apr 95

Figure 3-6. Software Development Personnel and Gantt Chart Analysis

3.3.3 Performance Analysis

Regardless of its feasibility or goodness, once a program has
committed to a plan, developer performance can be measured
against the plan. The program manager must pay close attention
to how well the developer keeps to the plan.

Unfortunately, by the time a size, effort, or schedule performance
problem is recognizable in a single indicator analysis, the problem
has likely become one of major proportions. Thus, in evaluating
performance the analyst must rely more on integrated analyses
using multiple indicators. Some of the things to look for in such an
analysis are as follows:

• Leading indicators– some indicators help to identify
problems before they translate into a measurable
schedule slip or cost over-run. For example,
requirements changes usually precede size and effort

Part 1 - The Software Measurement Process

Page 56

increases. Even if resources are not currently a problem
on a program, a large number of requirements changes
indicates that resources will become a problem if action
is not taken.

• Critical path items– even if high level indicators
suggest the program is moving ahead smoothly, delays
and quality problems in a critical path item can have a
ripple effect late in the program if not recognized and
countered early.

• Inconsistent trends– sometimes two related indicators
will suggest that different situations exist. Neither
variance taken alone may be large enough to suggest a
problem, but taken together they indicate that some
element of the process is not working as planned.

Figure 3-7 shows an example of a problem made visible by
detecting inconsistent trends. The figure overlays a design progress
indicator with a problem report indicator. (The same effect can be
seen by laying the graphs side by side.) While the measure of actual
design progress appears to be only slightly behind the plan, the
number of open problem reports is not going down. These open
problem reports represent rework that must be completed before
the design activity can be completed. Thus, the trends in these two
indicators are inconsistent.

Design Progress Versus
Problem Report Status

0

100

200

300

400

500

600

Jan
95

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
96

Date

0

25

50

75

100

125

150

N
um

be
r

of
P

ro
bl

em
 R

ep
or

ts

Planned Units Actual Units Open
Problem Reports

Program: PSM Data as of 31 Aug 95

SDR

Figure 3-7. Development Progress and Problem Report Profile
Correlation Example

Once the existence of a problem has been suggested by an analysis,
the problem should be localized by examining indicators based on

Part 1 - The Software Measurement Process

Page 57

more detailed data. In the example of Figure 3-7, the problem
report indicator should be generated for each of the CSCIs within
program XYZ. Identifying the specific source of the problem helps
to determine the cause and select an appropriate corrective action.

Additional context information is needed to make valid
interpretations as to the cause. For example, noting a discrepancy
between the originally estimated software size and the current
estimate (or actual) size does not provide enough information for
management action. The size difference may result because 1) the
size of the system was poorly estimated in the beginning, 2)
significant requirements changes have occurred, or 3) changes were
made in the way size is counted. Depending on the cause of the
variance, different actions may be indicated.

3.4 REPORT RESULTS

The measurement analyst must regularly communicate the results of
his or her analysis to the program manager. This communication is
normally done via a briefing or report. The software measurement
analyst should report the following:

• Overall evaluation of program - status relative to the
known program issues and projections of performance
to completion

• Identification of specific problems - location, cause,
and impact of any problems identified in the analysis

• Formulation of recommendations - alternative actions
proposed for addressing the underlying problems
identified in the analysis (with advantages and
disadvantages of each)

• Identification of potential new issues - nature of the
problem or proposed actions may result in the
identification of new issues that need to be tracked in
the future.

Reporting and reviewing measurement results must be integrated
into the management process. Two regular opportunities for
management action are as follows:

• Periodic status reviews - concentrate on analyzing
performance relative to plans and assumptions. Present
system level graphs first. Only introduce more detailed

Part 1 - The Software Measurement Process

Page 58

levels of analysis if a problem is identified. Do not
expect to report a problem every time.

• Major milestone reviews - consider feasibility and
performance. Re-estimates should be prepared for
effort, size, schedule, and other measures related to key
program issues. The measurement analyst’s assessment
of these estimates should be presented at this review.

The reporting system should promote regular interaction and
objective communication among the elements of the development
team. (See Figure 1-3.) An effective vehicle for this is an online
database and analysis capability accessible to both the developer
and the Program Management team. Recognize that the
measurement analysis report or briefing may contain proprietary or
sensitive information. The measurement analyst must take
appropriate steps to protect this information.

If possible, measurement results should be discussed with the
appropriate software developer personnel prior to the formal
review. This interaction provides an opportunity to discover events
and qualitative information that helps explain what is happening in
the data. Measurement should be used for communication and
understanding, not for punishment.

The measurement analyst should record (and be prepared to
explain) how analysis results and recommendations were arrived at.
This may be need to justify decisions and trace recommendations
back to the underlying data.

3.5 TAKE ACTION

The use of software measurement on a program does not require
any special, additional management control functions. However, it
does require that basic program management structures be in place.
Measurement complements the existing planning and control
activities. When management action is deemed appropriate based
on measurement information, it should be implemented via the
existing management structure and contractual mechanisms.

Part 1 - The Software Measurement Process

Page 59

Measurement helps to recognize that a problem exists and to
localize its cause. The identification of the underlying cause and
selection of appropriate corrective action requires the application of
good management and engineering judgment. Action must be
taken to realize any benefit from measurement.

Sometimes the developer will recognize the problem and take
action independently. At other times, the program manager will
have to intervene. Examples of actions that might be taken by the
program manager include the following:

• Extending the program schedule to maintain quality.
• Adding development resources to stay on schedule.
• Deleting functional capabilities to control costs.
• Changing the process to improve performance.
• Reallocating resources to support key activities.

Some of the actions listed above are significant and may not be
possible. However, others attempt to optimize performance within
the program’s established constraints. Measurement can help the
program manager to recognize and select the “best” course of
action available.

Measurement assists in making predictions about likely program
outcomes given different scenarios and actions. Current trends can
be projected into the future. Historical data and qualitative
experience from similar programs can also be very helpful in
evaluating alternatives. All of these types of information help the
program manager to arrive at the optimum decision within the
bounds of program constraints.

Once a corrective action is initiated, additional indicators may be
defined to assess the effectiveness of the action taken. Naturally,
there is a delay between the start of a corrective action and the
detection of its effects. Nevertheless, it is important to follow
through to ensure that the desired outcome is realized. In most

Part 1 - The Software Measurement Process

Page 60

cases new indicators to track actions can be defined using the data
already collected.

3.6 LIFE CYCLE APPLICATION

While the philosophy of issues-oriented measurement and flexible
analysis process advocated in this Guide applies throughout the life
cycle, the issues, measures, and focus of analysis may change as the
program progresses. This Guide adopts a three-phase life cycle
model consisting of Program Planning, Development, and Software
Support. This section discusses some of the unique measurement
concerns in each life cycle phase.

3.6.1 Program Planning

During the Program Planning Phase, the program manager’s
primary concerns are assessing the feasibility of the program plans
and selecting the most capable software developer for the job.
Feasibility of plans should be assessed as described in Section 3.3.2
above. Two sets of plans must be analyzed as follows:

• Program plan - assess the required functionality,
resources, and schedule defined for the program. Since
it may be difficult to adjust the level of resources and
schedule, the result of this assessment may be a
quantification of risk rather than revised budgets and
milestones.

• Developer plan - assess the developer’s approach to
satisfying the program plan in terms of required
functionality, resources, and schedule. Also assess the
technical approach, quality, and capability of each
potential developer.

Since the overall functionality, resource and schedule envelope is
established by the program, the technical approach, quality, and
capability will be major criteria in the selection of the developer.
Measurement-related information used to select the developer
should include the following:

• Past performance data - the developer should be able
to provide productivity and quality data from past
projects. When comparing potential developers' past
performance, be sure to compensate for differences in

Part 1 - The Software Measurement Process

Page 61

how measures such as lines of code, errors, and effort
are defined.

• Overall process maturity - the measurement maturity
of an organization is one dimension of its overall
process maturity. Organizations with an ad-hoc process
may have difficulty providing the basic measurement
data described in this Guide.

• Maturity of the measurement program - sometimes
organizations that rate well in terms of overall process
maturity have weak measurement programs. The ability
of the developer to provide accurate and meaningful
measurement data appropriate to the program issues
must be considered.

Of course, the choice of a developer can not be based solely on
measurement-related factors. The measurement capability of
potential developers is just one more factor that needs to be
considered along with the other technical, management, and
experience factors on which a source selection is based.

3.6.2 Development

During the development phase, the program manager continues to
be concerned with all six basic issues. Even developer capability
needs to be tracked because it can change. For example, a high
level of personnel turn-over could result in lower productivity.
During this phase, the focus of analysis turns to performance
relative to the plans, rather than the feasibility of the plans
themselves. However, replans continue to be assessed for
feasibility.

Development tasks often are categorized into four activities:
Requirements Analysis, Design, Implementation, and Integration
and Testing. Depending on the development model adopted for the
program, these activities may be organized in different ways. Each
new activity introduces new opportunities for measurement.

During the requirements analysis activity, the primary issues are
growth and stability, schedule and progress, and product quality.
The overall magnitude and stability of requirements can be tracked
by counting requirements and changes to them. However, progress
and quality are more difficult to measure during this phase. In part,
this difficulty is caused by the ad-hoc nature of the requirements

Part 1 - The Software Measurement Process

Page 62

process in many organizations. Measurement can only reflect the
developer’s process and product. It does not add structure.

The requirements process must be well defined to obtain
meaningful measures. One effective requirements technique is to
plan and conduct a series of reviews of parts of the requirements.
This technique offers several opportunities for measurement.
Completion of reviews can be tracked to assess progress. Action
items and problems from the reviews can be tracked to assess
quality.

During design and implementation, the focus is on schedule and
progress, product quality, and technical adequacy. The program
manager must continue to keep an eye on growth and stability to
avoid surprises. Again, the opportunity to gain insight into program
status depends on the structure of the developer’s process. To the
extent that the development process defines discrete design and
implementation activities, progress is easier to measure. Sometimes
progress comes at the expense of quality. The program manager
needs to recognize and address that situation if it arises. During
design and implementation, the adequacy of the developer’s
technical approach will be challenged. Any deficiencies must be
recognized as soon as possible so that a work-around can be
selected.

During integration and testing, the program focus is on getting the
product ready to be deployed. This means evaluating product
quality. The testing activity is often one of the shortest and most
intense. Consequently, the measurement analyst must focus on
providing rapid collection, analysis, and feedback to the program
manager (especially on problem report status) so that effective
decisions can be made. A weekly reporting interval often is used
during this activity. In some cases, daily test progress and problem
report status are provided. The determination of the reporting
interval depends on many factors, but the measurement analyst
should be prepared for this burst of activity during testing.

3.6.3 Software Support

Software support continues the transition in the program issues
focus towards product quality and away from size and growth.
Note that after deployment, when a system is normally in software
support, large enhancements may take place that are really new

Part 1 - The Software Measurement Process

Page 63

developments. These do not follow the usual “change and fix”
process for software support.

The software support process may be implemented in many
different ways. An organization different from the software
developer often handles software support. That organization is
likely to use a different management structure, personnel, and
process than the developer. Even though the basic principles still
apply in software support, the measurement program for the
software support organization usually needs to be planned
separately from that of the software developer. For example,
during development work unit progress measures may be collected
to track the design, coding, and integration and testing of
components. However, during software support the unit of work
tracked becomes the change request rather than the component.

During software support, problem reports and change requests may
be handled individually or bundled together to define a new version
of the software product. It is easier to measure and control the
version-based process. However, the nature of the system being
supported often dictates the version release strategy and other
aspects of the software engineering process.

Part 1 - The Software Measurement Process

Page 64

Part 1 - The Software Measurement Process

Page 65

CHAPTER 4 - IMPLEMENTING A MEASUREMENT
PROCESS

The previous chapters describe the software measurement process.
This process includes the tailoring and application of software
measures to address specific program issues. A well defined
measurement process is of little value if it is not properly
implemented within the organization. This chapter addresses how
to do this, and describes four key measurement implementation
activities. The chapter also addresses how measurement
information can be used to support overall organizational
requirements. Although this chapter approached measurement
implementation from the perspective of a DoD acquisition
organization, much of the guidance is applicable to any type of
organization implementing measurement.

4.1 MEASUREMENT IMPLEMENTATION OVERVIEW

Implementing a measurement process within an organization is
similar to implementing any new initiative or function.
Measurement represents a significant change in how an
organization does business, and the issues and concerns related to
this change must be directly addressed.

There are four key activities which must take place to effectively
introduce software measurement into an organization. These
activities are depicted in Figure 4-1 and described as follows:

Obtain Organizational Support - This activity is concerned
with generating support for software measurement at all levels
throughout the organization. Management mandated
measurement without organizational buy-in and support will
seldom succeed. All members of the organization, at all levels,
need to understand how measurement will directly benefit their
programs and their own work processes.

Define Measurement Responsibilities - This activity involves
establishing and assigning measurement related responsibility

Part 1 - The Software Measurement Process

Page 66

within the organization. The key positions generally responsible
for software measurement include the organizational and
program managers, the measurement analyst, and other
members of the technical and management staff who are
involved with software acquisition and development activities.
Clear definitions of who is responsible for what parts of the
measurement process are important to successful
implementation.

Provide Measurement Resources - This activity establishes
the measurement resources required to implement the
measurement process within the organization. These resources
include tools and funding of the measurement effort.

Initiate the Measurement Process - This activity involves
transitioning the focus from establishing the measurement
process to actually applying it within the context of a software
program.

Figure 4-1. Measurement Implementation Activities

4.2 MEASUREMENT IMPLEMENTATION ACTIVITIES

Software measurement is a useful tool which can help most DoD
organizations improve the management of their programs and help
them meet organizational objectives. Like any tool, measurement

Part 1 - The Software Measurement Process

Page 67

must be implemented correctly for it to be of any help. The
following sections address the activities and issues related to
implementing a measurement process.

4.2.1 Obtain Organizational Support

Implementing measurement in an organization represents a major
cultural change. Fear always exists that the measurement results
will be used improperly, to evaluate individual performance or to
arbitrarily rank development organizations. There may be concern
that measurement will highlight problems in a program or in an
organization, problems which were not visible before the
measurement process was implemented. Maybe the measurement
analysis will show that the software development plan was
unrealistic, or that only a portion of the software functionality will
actually be delivered. These concerns are real, and to overcome
them requires the support of all levels within the organization.

To successfully implement a measurement process, management
support is critical. This goes beyond the senior managers saying
that software measurement is “a good idea”. Management must
take an active and public interest in the measurement process. They
must be seen as supporting the process by providing adequate
resources, asking for data and analyses, and acting on that analysis.
The entire organization will then understand that measurement is
important, and begin to actively support it as well. A measurement
process requires enthusiastic leadership at the highest levels of the
organization to make it work.

Many managers first learn about software measurement when some
significant software “event” brings into question the way a program
or organization is being managed. Others learn about it as a result
of a policy directive or initiative. Few managers are first introduced
to software measurement as an effective program management tool
that can help to achieve defined program and organizational
objectives. In many cases, management views measurement as
“another thing to do” and as something that will require resources
that are already committed.

The key benefits of measurement to the organization should be
clearly identified. These include:

• objective insight into organizational issues and processes

Part 1 - The Software Measurement Process

Page 68

• early detection and resolution of software problems
• the availability of objective information to identify and

manage risk
• objective program team and organizational

communications
• the ability to assess organizational performance
• the ability to objectively defend and justify program and

organizational decisions

In addition to management support, measurement has to be adopted
and supported at lower levels in the organization. Most people
want to do a good job, and measurement can help them.
Evaluating acquisition alternatives, assessing the feasibility of
proposed, software plans, and identifying the key areas of technical
concern are all activities which involve the use of measurement.
One of the important aspects of obtaining support for measurement
throughout the organization is to ensure that everyone understands
that the measurement results will be used to support organizational
objectives, and not used to evaluate individual performance.

4.2.2 Define Measurement Responsibilities

The size and structure of each specific organization is directly
related to how measurement responsibility is assigned. How many
people are involved, and how the measurement tasks are actually
allocated, vary considerably from organization to organization. In
general, responsibility for implementing the measurement process is
focused at different levels.

The primary responsibility for the measurement process is at the
management level. In many DoD organizations, two different types
of managers are involved in the acquisition and support of software
intensive systems:

• Executive Manager - The executive manager, who in
many cases is the Program Executive Officer (PEO),
generally has responsibility for an organization more
than one program. The organizational manager’s
decisions materially affect all of the programs within the
organization. Measurement helps the organization
manager to determine the status of individual programs,
and to make decisions which apply across the
organization.

Part 1 - The Software Measurement Process

Page 69

• Program Manager - The program manager has direct
responsibility for a software intensive program. In most
cases, the program manager is the primary user of
measurement results. He is responsible for identifying
and managing the software issues, and communicating
with the program team, including the developer and
senior levels of DoD management. The program
manager uses measurement to make program decisions.

In some DoD organizations, the program manager is also the
organizational manager. It is the program manager’s responsibility
to ensure that measurement is integrated into the program.
Integration includes all of the activities which make measurement
part of the overall program management and technical processes,
including the identification of resources to support the measurement
effort.

While management is responsible for integrating and using
measurement within the organization, the program technical staff is
usually assigned the day to day tasks related to tailoring and
applying the measures. One of the key responsibilities is that of the
measurement analyst. The measurement analyst has the primary
responsibility for tailoring the measures, collecting and processing
the measurement data, analyzing the measurement results, and
reporting the results to management. The measurement analyst is
the primary measurement point of contact with the developer. with
respect to measurement. In short, the measurement analyst ensures
that the measurement process is implemented properly, and that the
program manager is getting the software information required to
properly manage the program.

Depending on the size and scope of the program, the program
office’s measurement team can consist of a part-time measurement
analyst or a multi-person team. The important thing is to have the
primary measurement responsibility for the program assigned to a
specific individual, and to allow that individual to interface directly
with the development team. If established, the measurement analyst
should be a member of the software engineering Integrated Product
Team (IPT). Above all, the measurement analyst must be able to
independently arrive at objective answers, and be able to convey
those answers directly to the program manager.

Other members of the program office technical staff also have
responsibility within the measurement process. They should each

Part 1 - The Software Measurement Process

Page 70

understand how the process works and what information it can
provide to them. They should also support measurement analysis
efforts by helping to identify program events which may have an
impact on interpreting the measurement data.

Although the development organization is not part of the program
office staff, it plays an important role in the measurement process.
Most of the software data used by both the developer and the
program office comes from the developer. All users must
understand how each measure is defined and what the data
represents. What software WBS elements, for example, are
included in the reported software effort data? The developer
should also designate a key measurement point of contact to
interface with the program office’s measurement analyst on a
regular basis. The developer’s measurement point of contact
should be part of any program software engineering IPT.

4.2.3 Provide Measurement Resources

Experience suggests that the measurement process will require from
1 to 5 percent of the total software program cost. Measurement
costs include personnel and tools, as well as the cost for the
developer to assemble and report the data. Most developers use
software data internally to manage their programs. As such, the
program office should not incur a considerable amount of additional
cost for the data to be collected. If the developer does not collect
software data, there should be some concern about the maturity of
the underlying software process.

As with any initiative, there are some non-recurring startup costs
associated with implementing a measurement process. These costs,
which include both training and tools, diminish as measurement
becomes a day to day activity within the organization. It is
important to view the measurement process as a long-term resource
within the organization. It should be self supporting, saving as
much as it costs, within a relatively short time after it is established.

In some DoD organizations, the measurement costs for individual
programs can be reduced by establishing the measurement team as
an organizational resource. As long as there is a primary analyst
assigned to work independently on each program, the measurement
team can share resources, tools, and expertise.

Part 1 - The Software Measurement Process

Page 71

4.2.3.1 Measurement Tools

Once the specific measurement requirements have been established,
the tools used to collect, process, and analyze the data should be
identified. On many smaller programs, the measurement process
can be adequately supported using a personal computer with an
common suite of integrated office software. On larger programs,
or on programs which need to implement more advanced analysis
techniques, additional measurement tools are usually required.
When deciding what resources are required, the wrong thing to do
is to purchase a specific tool before determining if it supports the
information needs of the program. The types of software issues that
need to be addressed and the characteristics of the measurement
process drive the support tool requirements. The process should
never be implemented around a pre-defined set of measurement
tools.

Several different classes of tools are commonly applied in the
measurement process. Many are used by the developer but may
be accessed by the program office.

• Database, Graphing, and Reporting Tools - These
tools manage and store the measurement data and
produce graphical and text based reports. Commercial
personal computer database applications are generally
adequate for most programs. For larger programs with
extensive data management and storage requirements,
consideration should be given to using more powerful
applications.

• Software Analysis and Modeling Tools - These tools
provide enhanced graphics and software analysis
capabilities generally unavailable from databases or
spreadsheets. The category includes software cost
estimation models, software reliability models, statistical
analysis tools, and similar applications. These tools can
be extremely valuable when implemented as part of the
overall measurement process.

• Measurement “Workstation” Tools - These
applications support user interaction at all levels of the
organization by providing real time access to both
measurement data and analysis results. They are very
useful for summarizing and providing measurement
information at the management level.

• Schedule and Project Management Tools - These
tools assist in program scheduling, progress tracking,

Part 1 - The Software Measurement Process

Page 72

and critical path analysis. Some tools in this category
can also track resource allocations and expenditures for
identified activities.

• Financial Management Tools - These tools help to
collect and store data related to labor and funds
expenditures. Some tools in this category include cost
accounting and earned value functions. In some cases
existing financial management systems may not provide
software specific data at an adequate level of detail.
These systems may be difficult to modify.

• Software Product Analysis Tools - These tools
generate software product related data through
automatic analysis of specific software products.
Examples include software complexity analyzers,
software size counting utilities, and similar product
measurement oriented applications.

• Software Data Collection Tools - These tools help to
automatically extract software measurement data from
systems which support the developer’s software
process. They can be commercial or locally developed
utilities which access the developer’s CASE tools,
configuration management tools, and other software
related systems. They are useful for providing the
program office with direct access to the developer’s
measurement data.

• Office Automation Tools - These tools provide
standard office automation applications such as word
processors, spreadsheets, and presentation graphics.
They can effectively support basic measurement analysis
analyses activities and help to produce measurement
related graphs and reports.

General guidelines for selecting tools to support the measurement
process include the following:

• Select tools that support the measurement process as
tailored to meet specific program needs. Do not build a
process around the tools.

• Evaluate tools that may already be available within the
organization.

• Select tools that automate as much of the measurement
process as possible. Automated data collection, data
processing, analysis, and reporting tools can
considerably improve the efficiency of the measurement
process.

Part 1 - The Software Measurement Process

Page 73

• Work closely with the developer to coordinate
measurement tool selection and implementation,
especially with respect to electronic data transfer.

• Select tools that simplify importing and exporting data
easily between different formats.

• Select tools that run on a common platform.

On most programs, some manual data entry will usually be
required. This should be kept to a minimum. It is usually more
cost effective to implement commercially available tools and
applications instead of developing them in-house. Data transfer
utilities which provide direct access to the developer’s measurement
data in many cases are unique to each program. It is cost effective
to implement these utilities rather than to rely on manual data
transfer and entry.

4.2.3.2 Measurement Training

Personnel at all levels of the organization require appropriate
software measurement training. Figure 4-2 summarizes the general
training requirements for different personnel in the program
organization.

Program managers require a good foundation in the basic concepts
of software engineering and software measurement. They need to
understand the capabilities and limitations of the measurement
process measurement and how it can help them to meet their
objectives.

Job Function
Program
Manager

Technical
Managers &
Engineers

Measurement
Analyst

Measurement Training Requirement

• • • Software Engineering
• • • Measurement Overview

• Data Collection and Management
• Measurement Analysis

Figure 4-2. Measurement Training Requirements for Program Personnel

Program office technical managers and engineers require training in
the basic concepts of software engineering and measurement. They

Part 1 - The Software Measurement Process

Page 74

must understand how the data will be used within the program
organization and how measurement will impact their own work.

Measurement analysts need appropriate training and experience in
software engineering, the measurement process, and in specific
software measurement disciplines. Software engineering expertise
is critical to the success of the measurement analyst. It provides the
basis for interpreting and analyzing the data. Every measurement
analyst should understand the activities and products inherent to the
software process, and be able to relate program software issues to
specific measures and analysis activities. Software estimation and
modeling skills, and statistical analysis experience is required for
more advanced analysis.

4.2.4 Initiate the Measurement Process

On most programs, some data collection and analysis occurs
immediately after the decision is made to implement a measurement
process. It is not unusual for all of the implementation activities to
be taking place concurrently. A key requirement is to show how
the measurement process can help address even the basic software
issues and start to answer the Program Manager’s questions. Even
if the program is large, initially implementing a few key measures
will provide important information that was not previously
available.

One of the most important things to do is to establish an interface
between the program office and the developer with respect to
software measurement. Once established, this interface will become
one of the important tools in the measurement process. Direct
access to the developer allows the measurement analyst to freely
address data issues, and allows for analysis feedback to be provided
to the developer on a working level. In some instances, the
program office - developer interface can be established as part of an
IPT.

Just establishing a measurement process will not have an immediate
impact on the program. As the measurement process is
implemented, use of the measurement results will need to be
“marketed” within the organization. At this point in time it is
especially important to use the measurement results correctly. The
data should be well defined, the analysis should be accurate, and the
developer should have an opportunity to address the results.

Part 1 - The Software Measurement Process

Page 75

After review by the Program Manager, the measurement
information should be made available to the entire program team.
This should include the developer. Discussion of the measurement
results with the developer should focus on how the measurement
results reflect what is actually happening on the program, and if
new issues identified by the analysis are valid. The developer is
important to the measurement process. If the developer is punished
for poor measurement results, then the flow of data may be
impeded or manipulated, resulting in the loss of program insight
and communication.

The measurement process tends to impose a discipline on program
software management activities. If the measurement process is
implemented properly, the results will be used throughout the
organization. It will provide insight into the program issues and
help management to make informed software decisions.

4.3 USING THE MEASUREMENT RESULTS

The primary user of software measurement information is the
individual program team. The team includes the DoD program
office and technical support organizations, as well as the software
developer and associated development organizations. Other
organizations, particularly those with responsibility within the DoD
acquisition structure, have a valid need for information which is
available from the measurement process. Each of these information
needs is somewhat unique. This is due to the fact that each
organization has a different role with respect to the program, and
must address different issues and questions. Figure 4-3 illustrates
the “types” of measurement information requirements within the
DoD structure. There are three primary viewpoints, the Program
Development Team, DoD Executive Management, and Software
Process Improvement groups.

Part 1 - The Software Measurement Process

Page 76

Figure 4-3. DoD Software Measurement Information Requirements

Not only is the program team the primary user of the software
measurement information, it is the primary source for the software
data and analysis results used throughout the structure. The
program manager has considerable influence over how the data is
used within his own program organization. In many instances, the
program manager is required to provide data outside of the
program development team. This can be of some concern,
especially if there is some question as to how the information will
be interpreted. Before using the measurement results, all
organizations should have a clear understanding of how to interpret
the information with respect to the specific program in question.
This requires all users to understand what the data represents, how
the analysis was conducted, and how does the measurement
information relate to the context of the program. All users should
understand the measurement process, especially its capabilities and
limitations. The objective of the program measurement process,
even at higher levels of the organization, remains the identification
and management of software issues, not to grade or punish the
program organizations or individual developers.

Measurement can be a powerful tool, but it can also be misused.
Using measurement results to compare and rank different programs
with respect to performance is a primary example. Software
measurement is different for every program. The measures that are
used and how they are defined are different, as are the overall
technical and management processes that the measures represent.
Even though there is a need to quantify program performance in a
standard manner, in most cases a comparison of programs using the
software measurement results will be invalid.

Part 1 - The Software Measurement Process

Page 77

4.3.1 Program Development Viewpoint

The program development organization has two primary decision-
makers that need measurement information: the DoD Program
Manager, and the Development Manager. They use the
measurement information in three ways:

• To analyze options and trade-offs
• To make program decisions
• To communicate program status

Integrated Product and Process Development (IPPD), implemented
through Integrated Product Teams (IPTs), provides a natural
mechanism for the use of measurement information. The purpose
of the IPT is to make team decisions based on timely and objective
data from the entire team, and software measurement information
specifically supports this objective. Measurement information
provides a basis for continuous feedback and discussion between
the Government and the developer team.

One of the most important uses of measurement at the program
level is to help define feasible software plans. The measurement
process will quickly identify if a program is not tracking to plan. In
many cases this is due to the plan being unrealistic. Using the
measurement information to trade off and manage software cost
schedule, and capability objectives and constraints helps to establish
achievable goals for the program team. At the very least, the
measurement information can be used to objectively address the
constraints when they cannot be materially changed.

4.3.2 DoD Executive Management Viewpoint

There are many uses of the measurement information outside of the
program organization. One of the most important is to satisfy DoD
executive management reporting requirements. Software
measurement can help in reporting the overall status of the
program. Objective data gives external organizations confidence
that the status of the program is accurately represented.
Measurement information also assists the DoD Program Manager in
coordinating with other joint or inter-related programs, particularly
on issues such as schedule. It also helps him to show how the
critical software portion of the program is being managed, and how
he is determining the status of the software with respect to

Part 1 - The Software Measurement Process

Page 78

readiness for operational test and delivery. Justifying decisions is
easier when based on a repeatable process that uses measurement
data. When DoD Management asks “Why did you decide to take
this course of action?” the DoD Program Manager can pro-actively
and objectively support his decision.

Oversight Organizations have special information needs. Using
measurement to support oversight requirements is challenging,
because the measurement results must be conveyed within the
technical and management context of the software effort.
Measurement can help by providing objective data that clearly
relates the program’s status. Insightful analyses can help in
understanding the type and criticality of the issues a program faces.
More importantly, the measurement information can lead Oversight
Organizations to ask the right questions.

Comments and direction from all DoD management organizations
should be fed back to the program measurement process. If there
are upper level concerns about a particular software issue,
measurement can be used at the program level to address it.

4.3.3 Process Improvement Viewpoint

Software measurement is also used outside of the program
organization to support software process improvement. Software
Engineering Process Groups (SEPG), in both the government
acquisition and developer organizations, use the measurement data
to help identify candidate areas for process improvement activities.
Measurement also helps to evaluate the effects of process changes
across an organization. Without measurement, an organization can
have little confidence that it is improving.

4.3.4 Lessons Learned

Figure 4-4 summarizes some of the important lessons learned in
getting a measurement process started and then using its results.

Part 1 - The Software Measurement Process

Page 79

Lessons Learned
Getting Started Using Results

Ensure that everyone in the organization
understands both the capabilities and
limitations of the measurement process.

Do not allow anyone in the organization to
use measurement to evaluate individual or
workgroup performance.

Start small. Implement only a few measures
to address key issues and show how the
measurement results support both individual
and management objectives

Make the measurement data and information
available to everyone in the organization.
This is a key approach in helping people to
actually use the results. If the information is
valid, people will find a way to use it

Ensure that only the required measures are
implemented, based on the issues and
objectives of the organization. If you don’t
need the data, don’t collect it. The
measurement process must be cost effective
to succeed.

Do something early. A considerable amount
of meaningful analysis can be performed
with a minimal amount of data. Don’t wait
until all of the data is available to apply it.

Assign a key individual to implement the
measurement process. This “measurement
analyst” should be an integral part of the
program team and should act as the primary
interface with the developer with respect to
software measurement.

Different levels within the same organization
have different information needs.
Organization managers may make
investment decisions with respect to
software process technology and tools while
program managers make decisions about
specific technologies used to best satisfy
program objectives. Organizational issues
and objectives do not always equate to those
of a specific program.

The Program Manager should not incur
significant costs from the program for the
developer to collect software data. The
unavailability of data may indicate a low
level of maturity in the developer’s software
process.

Measurement should be made an integral
part of the program or organization.
Measurement should support the existing
management and technical processes.
Measurement should not be treated as an
“add on” within the organization.

The measurement process can initially be
implemented with basic, commercially
available database, spreadsheet, word
processing, and presentation graphics
applications. More advanced tools can be
added as required.

The program manager must be at least
willing to listen to “bad news” resulting from
the measurement analysis. Not every
analysis result requires action. In some
cases the recommended action is not
feasible. Measurement is intended to help
the program manager make a decision, not
make it for him

All users at all levels must understand what
the measurement data represents. This
understanding is vital to the proper
interpretation of the measurement analysis
results.

Management should not try to “influence” the
measurement results before they are
reported. They should, however, understand
how the reported results were arrived at and
what they mean with respect to the
associated software issues.
Pro-actively use the measurement
information to report program status.

Figure 4-4. Lessons Learned for Measurement Implementation

Part 1 - The Software Measurement Process

Page 80

Action

Issues

Measures

Indicators

Analysis

Information

P RACTICAL
 S OFTWARE
 M EASUREMENT

SELECTING AND
SPECIFYING
PROGRAM MEASURES
PART 2

Part 2 - Selecting and Specifying Program Measures

Page 82

Part 2 - Selecting and Specifying Program Measures

Page 83

SELECTING AND SPECIFYING PROGRAM MEASURES

Part 1 of the Guide describes the overall measurement tailoring
process, and explains each of the three associated tailoring
activities. This part of the guide, Part 2, addresses the second step
of the tailoring process in more detail. It shows how to actually
use the PSM guidance to select the appropriate measures and to
specify the related data and implementation requirements.

This part of the guide is organized into three chapters:

• Chapter 1, How to Select and Specify Program Measures -
describes how to select from a set of proven measures
based upon a prioritized list of program issues and
questions. It explains how to use the detailed PSM
measurement selection and specification information found
in Chapter 2.

• Chapter 2, Detailed Measurement Selection and
Specification Information - packages measurement
selection and specification experience derived from
successful DoD programs into a series of tables which
helps you to choose which measurement categories and
individual measures are correct for your program. The
tables also provide specification guidance for each
measure which helps you to define associated data and
implementation requirements.

• Chapter 3, Measurement Selection and Specification
Example - shows how the guidance in Chapters 2 and 3 are
used to select and define the measures within a typical DoD
program scenario.

The PSM measurement selection and specification guidance is
based upon actual implementation experience. It is a compilation
of the best and most commonly used measurement practices which
have helped DoD Program Managers achieve success on past
programs.

Part 2 - Selecting and Specifying Program Measures

Page 84

Part 2 - Selecting and Specifying Program Measures

Page 85

TABLE OF CONTENTS

CHAPTER 1- HOW TO SELECT AND SPECIFY PROGRAM MEASURES....................87
1.1 Introduction...87

1.2 Identifying and Prioritizing Program Issues...90

1.3 Selecting the Appropriate Measurement Categories..91

1.4 Selecting the Applicable Measures..93

1.5 Specifying Measurement Data and Implementation Requirements...95

1.6 Selecting and Specifying Measures for Existing Programs..98

CHAPTER 2 – DETAILED MEASUREMENT SELECTION AND SPECIFICATION
INFORMATION................................101

2.1 Introduction...101

2.2 How To Use the Measurement Tables...101
2.2.1 Measurement Category Tables...102
2.2.2 Measurement Description Tables...104
2.2.3 General Measurement Specification Table...107
2.2.4 Additional Implementation Guidance..107
2.2.5 Measurement Selection and Specification Tables...108

CHAPTER 3 – MEASUREMENT SELECTION AND SPECIFICATION EXAMPLE......173
3.1 Program Scenario..173

3.2 Measurement Selection Summary...174

Part 2 - Selecting and Specifying Program Measures

Page 86

Part 2 - Selecting and Specifying Program Measures

Page 87

CHAPTER 1- HOW TO SELECT AND SPECIFY PROGRAM
MEASURES

One of the most important aspects of implementing the
measurement process is tailoring it to meet the specific needs of
your program. There are three activities associated with tailoring
the process. First, the issues which characterize the program must
be identified and prioritized. Second, the software measures which
best address these issues must be selected and the associated data
and implementation requirements specified. Third, the selected
measures, data requirements, and implementation requirements
must be integrated into the software process. During integration,
the measures and the requirements are revised to better reflect the
characteristics of the software development environment. The
result of the tailoring effort is a well defined measurement plan
which directly addresses the program’s unique information needs,
and which can be implemented without materially impacting the
developer’s software process.

Part 1 of Practical Software Measurement explains how to identify
and prioritize program specific issues. Once these issues are
identified, the guidance provided in this chapter shows how to
actually select the appropriate measures and how to specify the
related data and implementation requirements.

The software measures presented in the Part 2 tables of the Guide
are widely used for program management purposes. However, they
are not meant to imply an exhaustive or required set of measures.
PSM provides guidance for tailoring any measure, whether or not it
is included in the Part 2 tables.

1.1 INTRODUCTION

To be effective, the measures that you select must directly address
the specific software management and technical issues which
characterize your program. Since every program is described by a
unique set of issues, the applied measurement sets are also unique.
Each measurement set must be tailored to meet the specific

Part 2 - Selecting and Specifying Program Measures

Page 88

information requirements and characteristics of each individual
program.

The PSM approach used for selecting and specifying program
measures is based upon the direct relationship between program
issues, information needs, and the specific measures which provide
the required information.

Three key PSM mechanisms which support the measurement
selection and specification approach. These include: 1) a set of
common software issues, which allows you to group closely
related program issues into a manageable structure, 2) the definition
of different measurement categories for each common issue, each
of which groups the measures which provide similar types of
information related to that issue, and 3) detailed measurement
descriptions, which define each individual measure with respect to
when it is best used, what data it provides, and how it should be
implemented.

Figure 2-1 shows how the PSM mechanisms help you to select the
measures that are most appropriate for your program.

Select and Specify Program Measures

Figure 2-1 PSM Measurement Selection Mechanisms

The three PSM mechanisms help to map the issues to the measures,
and subsequently to define the data and implementation
requirements for each selected measure. To select the appropriate

Part 2 - Selecting and Specifying Program Measures

Page 89

measures, the specific program issues are prioritized and allocated
to the PSM Common Issues as described in Part 1 of the Guide.
The Measurement Categories which provide the types of
information necessary to adequately address each of the defined
Common Issues are then selected, using the measurement category
tables contained in Chapter 2, Detailed Measurement Selection and
Specification Information. The individual measures which
comprise each Measurement Category are then reviewed for
specific applicability, and after the appropriate measures are
selected, associated data and implementation requirements are
defined for each. This is accomplished using the detailed measure
tables contained in Chapter 2.

Although most of the measurement requirements are usually
defined when the software measurement process is initially tailored
for a program, changes to the applied measurement set are
sometimes required due to changes in the program’s issues and
information requirements. This is most common in large software
development programs, and is a result of the changing priority of
program issues due to normal changes in the management focus
over the life cycle of the development, redirection of the program’s
objectives, or the identification of new risks and issues.

The PSM measurement selection and specification guidance is
designed to simplify the mapping of the measures to the program
issues. As such, measures which in reality support multiple
software issues are listed under a single primary issue. As you use
the guidance to select your measures, keep in mind that many of the
measures do provide insight into more than one common issue.

The measures which are the foundation for the PSM measurement
selection and specification approach are described in Chapter 2,
Detailed Measurement Selection and Specification Information.
These measures are not intended to represent an exhaustive list of
program management measures. They are, however, measures
which have repeatedly proven to be effective over a wide range of
successful programs, and represent the best practices for addressing
the issues faced by most DoD Program Managers responsible for
software intensive systems.

No program should implement all of the measures listed in Chapter
2. Although the measures that are implemented are driven primarily
by the issues which must be addressed, the overall characteristics of

Part 2 - Selecting and Specifying Program Measures

Page 90

the program and the software process also need to be taken into
consideration during the selection process. The types of indicators
and graphs also have a bearing on the measures which are selected.
Although the PSM measurement process addresses measurement
application (e.g. tailoring and analysis) separately, anticipation of
the types of graphs and reports which may be needed helps to
define which measures are required.

1.2 IDENTIFYING AND PRIORITIZING PROGRAM ISSUES

The first step in selecting and specifying the measures for any
program is to identify and prioritize the specific program software
issues which the measurement process has to address. As discussed
in Part 1, there are many sources of information which help the
Program Manager define these software issues. The issue or risk
identification process which helps to do this is usually implemented,
either formally or informally, on most DoD programs. The
information which helps to identify and prioritize the program
specific software issues is derived from risk analysis results,
definition and recognition of program constraints and assumptions,
identification of leveraged software processes and technologies
which have a direct bearing on program success, and the overall
experience of the Program Manager and the program team.
External oversight and reporting requirements also influence the
issues and questions that need to be addressed by measurement.

As the above information is gathered and reviewed by the program
team, an overall software issue profile which characterizes the
program is developed. This issue profile generally includes the
prioritized list of program management and technical risks, issues,
and questions, and helps to focus the information and analysis needs
within the program.

The prioritized list of program software issues is the starting point
for selecting and specifying the required software measures. Rather
than provide an exhaustive list of all potential software issues which
map to all applicable measures, PSM allocates the identified
program specific issues to a set of six Common Software Issues.
These Common Software Issues are basic to all programs and
represents the key software areas which must be managed on a day
to day basis by DoD program managers. They help to simplify the
mapping of program issues to the measures. This is accomplished

Part 2 - Selecting and Specifying Program Measures

Page 91

by first mapping the set of Common Issues to pre-defined
measurement categories, and then to the measures listed within
each category.

1.3 SELECTING THE APPROPRIATE MEASUREMENT CATEGORIES

Once the program specific software issues are identified,
prioritized, and allocated to one of the six Common Software
Issues, the program team will have a good understanding of the
software questions they will be called upon to answer, and the types
of information that they require. The second step in selecting and
specifying the measures for the program is to select the
measurement categories which include the measures that provide
the needed information.

Figure 2-2 shows the complete mapping of the Common Issues to
the PSM measurement categories and associated measures. Some
common issues are comprised of only a single measurement
category, and some measurement categories contain only a single
measure. Since the PSM guidance is based upon actual
measurement experience, the overall measurement selection
structure is intended to be augmented and modified to meet
individual program needs.

As shown in Figure 2-2, each measurement category is mapped to a
single common issue. Within each common issue, the measurement
categories are differentiated by the distinct types of information and
questions that their respective measures can address. Under the
common issue of Schedule and Progress, for example, there are
four different measurement categories, Milestone Performance,
Work Unit Progress, Schedule Performance and Incremental
Capability. The measures in all of these categories address schedule
and progress related issues, but they do so with different types of
information at different levels of detail.

Milestone performance measures provide basic start and end dates
for defined software activities and events. This is adequate for
developing and reviewing Gantt-like schedules, but the measures do
not address the degree of completion of the individual software
activities and products at any point in time. More detailed schedule
and progress information is provided by the measures in the Work
Unit Progress measurement category. Earned value based schedule

Part 2 - Selecting and Specifying Program Measures

Page 92

information, with schedule variances expressed in dollars, is
provided by the measures allocated to Schedule Performance.
Lastly, the measures which comprise the Incremental Capability
category show whether or not planned software components are
being completed as planned in an incremental type of software
development.

Issues - Categories - Measures Mapping
Issue Category Measure
Schedule and
Progress

Milestone Performance Milestone Dates

Work Unit Progress Components Designed
Components Implemented
Components Integrated and Tested
Requirements Allocated
Requirements Tested
Test Cases Completed
Paths Tested
Problem Reports Resolved
Reviews Completed
Changes Implemented

Schedule Performance Schedule Variance
Incremental Capability Build Content - Component

Build Content - Function
Resources and
Cost

Effort Profile Effort

Staff Profile Staff Level
Staff Experience
Staff Turnover

Cost Performance Cost Variance
Cost Profile

Environment Availability Resource Availability Dates
Resource Utilization

Growth and
Stability

Product Size and Stability Lines of Code
Components
Words of Memory
Database Size

Functional Size and Stability Requirements
Function Points

Target Computer Resource
Utilization

CPU Utilization
CPU Throughout
I/O Utilization
I/O Throughput
Memory Utilization
Storage Utilization
Response Time

Product Quality Defect Profile Problem Report Trends
Problem Report Aging
Defect Density
Failure Interval

Complexity Cyclomatic Complexity
Development
Performance

Process Maturity Capability Maturity Model Level

Productivity Product/Effort Ratio
Function/Effort Ratio

Rework Rework Size
Rework Effort

Part 2 - Selecting and Specifying Program Measures

Page 93

Technical
Adequacy

Technology Impacts None

Figure 2-2 Mapping Common Issues to Measurement Categories and
Measures

The Measurement Category tables in Chapter 2 describe each PSM
Measurement Category in detail. The tables define each category in
terms of what information is provided by the included measures,
and the applicability of the measures within the category to different
types of programs and software processes. The tables also identify
the limitations of the types of measures in the category. The tables
help you to determine which of the measurement categories best
satisfy the projected information requirements for the issues you
have defined.

The Measurement Category tables in Chapter 2 are grouped with
similar tables which describe each individual measure within that
category. It is recommended that you review both the category and
associated measurement tables together to help determine if the
information provided by a particular measurement category will
meet your needs. Always try to choose the measurement category
which provides you with the best type of information needed to
address your prioritized list of issues. For critical high priority
issues, consider selecting more than one measurement category.
This will provide different types of measures and measurement
information, allowing for more in-depth analysis.

1.4 SELECTING THE APPLICABLE MEASURES

The third step in selecting and specifying program measures is to
actually choose the measures which best address the specific
program issues. In most cases, selection of the applicable software
measures will be accomplished in conjunction with the selection of
the appropriate measurement categories. The overall objective is to
define measures which not only adequately address the identified
issues, but are practical to implement given the management and
technical characteristics of the program.

As discussed in Part 1 of PSM, there are a number of criteria which
have a direct bearing on which measures are selected. The most

Part 2 - Selecting and Specifying Program Measures

Page 94

important is how effective the measure is in addressing the specific
issue in question. Other factors include:

• the effectiveness of the measure in addressing multiple issues

• the applicability of the measure within the program domain

• how well the measure is supported by existing program
management practices

• the availability of the associated measurement data and the
cost to collect it

• the applicability of the measure to the life cycle phase of the
program

• the usefulness of the measure in addressing external reporting
requirements

• the overall size and scope of the program, including the
derivation and source of the software

The Measurement Description tables in Chapter 2 explain each of
the PSM measures in detail. Each table includes criteria for
determining whether or not to select the measure. This information
is found in the measurement definition and selection guidance
portions of the tables.

In most cases the selection process will require that tradeoffs be
made among the measurement selection criteria. A given measure,
for example, may directly address a high priority program issue, but
be too costly to implement in terms of time and resources.
Similarly, on a large program you may have to limit the number of
measures that you apply in order to adequately address the high
priority issues for all of the software. Some measures, when used
in conjunction with other specific measures, support key analysis
techniques. Milestone Dates, Labor Hours, and Lines of Code, for
example, are the measures used to calculate and analyze software
development performance in terms of productivity.

In general, measures from different measurement categories within
the same common issues can be substituted with some degree of
effectiveness. Also, measures which are categorized under different
common issues can provide additional insight into the issue in

Part 2 - Selecting and Specifying Program Measures

Page 95

question. Obviously, it is better to use a substitute measure than to
select a measure that cannot be implemented.

After the initial set of measures is selected, it should be reviewed to
ensure that the high priority issues are addressed, and that there is
adequate coverage across all of the identified issues. For some
unique issues, none of the PSM measures may provide adequate
information. In these cases, more advanced or different measures
than those provided in the PSM guidance should be defined and
specified. The bibliography contained in Part 6 provides potential
sources for other measures.

1.5 SPECIFYING MEASUREMENT DATA AND IMPLEMENTATION REQUIREMENTS

The last step in the measurement selection and specification process
is to define the data and implementation requirements for each of
the selected measures. The PSM guidance that supports this
activity is also included in the Chapter 2 Measurement Description
tables in the Specification Guidance portion of the tables.

The tables include a list of the data items which are typically
collected for each measure, the typical levels at which the data is
collected and reported, the software activities to which the measure
applies, and other pertinent information. The purpose of this
information is to help identify those data and implementation
requirements which should be considered in specifying the measure.

The specification information provided in a Measurement
Description table is focused on the single measure being described.
A set of general implementation requirements, applicable to all
measures, is listed in a separate table in Chapter 2, and titled
General Measurement Specification. After reviewing the individual
measurement specification guidance on the individual tables for the
selected measures, the specification guidance in the General
Measurement Specification table should be addressed.

The general specification guidance outlines the requirements related
to defining and collecting measurement data. These requirements
help to define the overall measurement implementation approach on
the program and help to convey to the developer how the
measurement plan should be implemented. The general
requirements include the following:

Part 2 - Selecting and Specifying Program Measures

Page 96

• Data Types - Measurement data representing plans, changes to
plans, and actuals for each measure should be collected and
reported. Plans and estimates should be updated regularly by
the developer. Effective insight can be derived early in the
program by analyzing how the planning data is changing.
Extremely stable plans may indicate that the developer is not
adjusting to actual program events. For many programs some
plans and estimates are difficult to collect due to limitations in
the software process. Not everyone, for example, can
adequately project the number of expected problem reports to
be found. In these cases trends based on the periodic actual
data may be adequate to support the measurement analysis
requirements.

• Measurement Definitions - During the integration portion of
measurement tailoring, the developer identifies the actual
measurement definitions and methodologies that will be used
for each specified measure. These definitions sometimes vary
over the course of the program, as software processes are
modified and updated. Changes to the definition and
interpretation of any measure should be defined by the
developer and relayed to the program office. In many cases this
information is included in the periodic delivery of the
measurement data. For many measures, such as lines of code,
the estimation methodologies and the way the actuals are
counted may be different. This can sometimes result in
variances between plans and actuals which are measurement,
not performance related. Such estimation inconsistencies
should be identified. Many measures require that both the
estimation and actual counting methodologies be defined, as
well as the “exit” criteria for measuring actuals. Definition of
the measures is extremely important, as it provides the basis for
correct interpretation of the associated data.

• Data Dates - For each measure, both the date that the
measurement data was collected and the date that it is reported
should be identified. This allows the timeliness of the data to be
assessed, and supports the correlation of related measurement
data during analysis. On a productivity calculation, for
example, the time period during which the number of lines of
code produced should correspond to the time period during
which the labor hours used to produce them are counted. The
difference between the date the data was collected and the date

Part 2 - Selecting and Specifying Program Measures

Page 97

the data was provided to the program office should be
minimized. This allows for timely analysis and feedback on the
issues.

• Collection Periodicity - Measurement data should be collected
on a periodic, not event driven basis. This is generally monthly
on most programs but can be adjusted as necessary. Problem
report data, for example, is collected and reported on a weekly
and sometimes daily basis during integration and test.

• Measurement Scope - If more than one organization is
involved in developing the software for a program,
measurement data should be collected from each and identified
by source. This is usually the case when there are one or more
software subcontractors working under a prime contractor. In
many instances the individual organizations have very different
software processes which result in different measurement
definitions for the same measure. This prevents the
combination and aggregation of some types of measurement
data from the different organizations. In these cases the data
from a given organization must be managed and analyzed
separately. For example, a system level productivity calculation
may be invalid if different subcontractors count labor hours and
software size differently. In some cases, different measures will
be used by different organizations to address similar issues.

• Program Phase - The measures which are selected and
integrated into the program should generally be applied to all
life cycle phases, including program planning, development, and
software support. For most measures, the planning data will be
available initially, followed by actual data as the program
progresses and planned software process activities are
implemented. Even when actual data is available, the related
measurement plans and estimates should be continuously
updated.

• Data Reporting Mechanisms - The reporting mechanisms for
delivering data from the developer vary based upon the actual
measures which are selected and the internal software and
program management processes of both the developer and the
program office. The data for many measures, such as problem
reports, is usually available from an existing configuration
management database which can be accessed on a real-time

Part 2 - Selecting and Specifying Program Measures

Page 98

basis. In other cases, such as with effort, size, and schedule
measures, the data can easily be formatted into electronic media
and delivered accordingly. Some data may need to be delivered
in hard copy format. During the integration portion of the
tailoring process, the developer identifies the mechanisms which
are available. Every effort should be given to establishing the
interfaces required to electronically transfer the data on a
periodic basis.

• When the measures have been selected and the associated data
and implementation requirements are complete, this information
is conveyed to the development organization for integration into
the software process. During integration, the developer
suggests revisions to better align the program office’s
measurement requirements with the software process, and
defines the actual measurement methodologies and data
reporting mechanisms for each measure. This information
essentially defines the program measurement plan.

The actual software measurement selection and specification
process is dynamic. Although it is described as a step by step
approach, many of the activities take place concurrently. The PSM
guidance represents current practice, but is intended to be modified
and augmented as required to meet new or unique program needs.

1.6 SELECTING AND SPECIFYING MEASURES FOR EXISTING PROGRAMS

The PSM measurement selection and specification guidance is
generally structured to support a sequential tailoring of the
measurement process. In some instances, the need to implement a
measurement process is driven by a significant program event or
issue which must to be immediately supported by objective
software information. In other cases, new policy guidance or other
external requirements such as a major milestone review may make it
necessary to implement measurement on a program which has
already been initiated.

If the measurement process is to be implemented on an existing
program, the PSM selection and specification guidance can be used
to help identify the measures and associated data which can usually
be derived from the existing software process. The overall
approach still begins with the identification and prioritization of the
specific program issues. In all likelihood, key issues and problems

Part 2 - Selecting and Specifying Program Measures

Page 99

have already been identified, and the immediate objective is to
identify what information can be used to analyze the issues and
provide meaningful information to the Program Manager.

In general, most programs have some existing measures or data
available which correspond to the following PSM Common Issues
and associated Measurement Categories:

• • Schedule and Progress
 - Milestone Performance
 - Schedule Performance

• • Resources and Cost
 - Effort Allocation
 - Cost Performance

• • Growth and Stability
 - Product Size and Stability

• • Product Quality
 - Defect Profile

The PSM measurement description tables can be used to identify
and define the measures and data available on an existing program.
The measures which are required to address key issues but are not
available can also be identified.

In general, the available measures on a program just implementing a
measurement process are available at higher levels of detail.
Software labor hours, for example, may only be available at a
system or organizational level, and may not be allocated to the
software component (i.e., CSCI) or activity (Design) levels.
Similarly, software sizes may be available in terms of the number of
components, and not in lines of code or function points. A
significant amount of analysis can usually be performed with the
existing data. As the measurement process is implemented,
deficiencies with respect to required measures and collecting and
reporting mechanisms can be identified and corrected.

The most important aspect of implementing the measurement
process on an existing program is to start with the measures and
data which are available while focusing on the application of a
consistent approach for data collection, analysis, and reporting.

Part 2 - Selecting and Specifying Program Measures

Page 100

Part 2 - Selecting and Specifying Program Measures

Page 101

CHAPTER 2 – DETAILED MEASUREMENT SELECTION AND
SPECIFICATION INFORMATION

Chapter 1 explained the PSM approach for selecting and specifying
program measures, and the use of Common Software Issues,
Measurement Categories, and Detailed Measurement Descriptions in
the selection process. This chapter provides the detailed information
needed to actually determine which measures to use, and to define the
data and implementation requirements for the measures that you select.
This information is contained in a set of comprehensive Measurement
Category and Measurement Description tables. Tables are provided
for each Common Software Issue. The information which comprises
the Measurement Tables is derived from actual measurement
experience on successful DoD programs.

2.1 INTRODUCTION

The Measurement Category and Measurement Description Tables
provide the detailed information that you need to select and specify
the measures for your program. The PSM selection and
specification approach is based upon the direct relationship between
program issues, information needs, and the specific measures which
provide the required information. To implement this approach,
PSM defines a simple mapping from the Common Software Issues
to related Measurement Categories, and then to individual
Measures. This mapping is depicted in 2-2. The structure of the
Measurement Tables in this chapter follows this mapping, and
guides the user in selecting first the measurement categories, and
then the specific measures which address the identified program
issues. After the measures are selected, the tables further provide
the information that is required to specify the data and
implementation requirements for each selected measure.

2.2 HOW TO USE THE MEASUREMENT TABLES

Two types of Measurement Tables are provided, Measurement
Category Tables and individual Measurement Description Tables.

Part 2 - Selecting and Specifying Program Measures

Page 102

2.2.1 Measurement Category Tables

The Measurement Category Tables help you to determine if the
measures in a specific category provide the type of information
required to adequately address the issue in question. These tables
should be reviewed for each Common Software Issue which has
been identified as being relevant to the program. If the category
provides the type of information that is required, the Measurement
Description Tables within that category should then be reviewed to
select specific measures. In most cases the Measurement Category
Tables and the Measurement Description tables are reviewed
concurrently.

Figure 2-3 is a “roadmap” to the information contained in a
Measurement Category Table. The following is a description of the
type of information provided in each section of the table. The
information in each Measurement Category Table section applies to
all measures within the category.

• Measurement Category and Issue - this section identifies the
Measurement Category and the corresponding Common
Software Issue.

• Definition and Description - this section provides a
description of the types of measurement information provided
by the measures which comprise the Measurement Category,
and indicates how this measurement information is used.

• Program Application - this section provides information which
helps to identify if the measures in the category are applicable to
specific types of programs. The information addresses
applicability with respect to functional domain, size, and life-
cycle phase of the program.

• Measures Included In this Category - this section lists the
measures which are included in the Measurement Category. In
some cases this is a single measure.

• Limitations - this section addresses the general limitations of
the measures in the category. The information helps to
determine if the measures provide the type of measurement
information that is required.

Part 2 - Selecting and Specifying Program Measures

Page 103

• Related Measurement Categories - this section references
other PSM measurement categories which contain measures
which are useful if implemented in conjunction with the
measures in the current category. These related categories
provide information which supports a more complete analysis of
the issue in question.

• Additional Information - this section provides supplementary
information which applies to the measures included in the
Measurement Category. This information may define concepts
or terms used in the measures or provide amplifying selection
guidance. This section is not included for all Measurement
Category tables.

• Example Indicator - Part 3 of PSM includes sample graphs of
measurement indicators derived from selected measures in each
of the 14 Measurement Categories. This section indicates
which measure or measures from the category were selected for
use in Part 3.

Measurement Category Product Size and Stability
Issue - Growth and Stability

Program Application

Product Size and Stability measures quantify the physical size of a software product. Product size
 is a critical factor for estimating development schedule and cost. These measures also provide
information about the amount and frequenty of change to software products which is especially
critical in the development.

Basic measurement category applicable to most programs.
Measures in this category are usually selected based on domain characteristics.
Applicable to all software process models.
Useful during program planning, development, and software support phases.

.

.

.

.

Measures Included in this Category

Lines of Code
Number of Components
Words of Memory
Database Size

.

.

.

.

Limitations
Product size measures do not always directly map to the amount of functionality in the system.
Measures in this category do not generally address software quality, complexity, or difficulty.
Accurate estimates are dependent on the availability of good historical data or engineering
experience.
Reported changes of software product size often occur too late to correct the underlying problems.
Measurement of requirements or design changes provides earlier warnings of related problems.

.

.

.

.

Related Measurement Categories
Productivity
Functional Size and Stability
Work Unit Progress

.

.

.

Additional Information
Components may be defined differently for each program. Components can be units, CSCI's,
objects, interfaces, screens, reports, packages, icons, primatives, or other measurable product
structures. Problem reports are sometimes considered to be components, especially with respect to
software maintenance activities during the software support phase. COTS/GOTS and other non-
developed or reusable software products can also be counted as components. Some components
can be aggregated to form higher level components (for example CSCIs to builds). These can be
referred to as sub-components.

.

Example Indicator
Software Size (PSM Part 3, Section 3.9).

Related Measurement
Categories

lists other measurement
categories which contain
measures useful to analyze
with the measures
recorded in this category

Measures Included in
This Category

lists measures
included in category

each measure has an
individual
Measurement
Description Table

Program Application

applicability of the
measure to specific
types of programs

applicability of
category measures to
program's with
specific software
characteristics

Definition & Description

type of measurement
information category
measures provide

how the measure
is used

Measure, Measurement
Category and Issue

identifies category
and related issue

Limitations

explains what
information the
measures in the category
do not provide.

Additional Information

not included for all
categories

provides supplemental
definition and application
information for the
included measures.

Example Indicator

identifies the
measure(s) in the
category used for the
sample graph(s) in PSM
Part 3
associated Part 3 figure
number

Part 2 - Selecting and Specifying Program Measures

Page 104

Figure 2-3 Measurement Category Table “Roadmap”

2.2.2 Measurement Description Tables

The Measurement Description Tables serve two purposes. As
such, they contain two types of information. The first type of
information is called selection guidance. This information helps to
determine if a measure will effectively address an identified issue,
and if the measure is applicable given the characteristics of the
program and the nature of the associated management and technical
processes. The tables also provide a second type of information
called specification guidance. This information is used to define the
specific data and implementation requirements for each selected
measure.

Some specification guidance is common to all measures. Rather
than repeat this information in every Measurement Description
Table, it is summarized in a single General Measurement
Specification Table. This table is a unique Measurement
Description Table which applies to all measures. It is intended to
be used in conjunction with each of the individual Measurement
Description Tables when specifying measurement data and
implementation requirements.

Figure 2-4 is a “roadmap” to the information contained in a
Measurement Description Table. The following is a summary of
the type of information provided in each section of the table.

• Measure, Measurement Category, and Issue - this section
identifies the specific Measure, the associated Measurement
Category, and the corresponding Common Software Issue.

• Definition and Description - this section provides a definition
of the measure and a description of the measurement
information that it provides. It also explains how the measure is
used, and how effective the measure is in addressing related
issues. This section addresses both selection and specification
guidance.

• Program Application - this section provides selection
guidance information which helps to identify if the measure is
applicable to specific types of programs. The information
addresses applicability with respect to functional domain,

Part 2 - Selecting and Specifying Program Measures

Page 105

software size, scope, type and origin, and life-cycle phase of the
program. It specifically addresses application of the measure to
real-time, data intensive, and other systems. It also identifies
the life cycle phases in which the measure is most useful. The
overall use of the measure within the DoD and industry is also
addressed.

• Process Integration - this section provides selection guidance
information which helps to determine if the measure is
applicable to specific program and technical management
processes. The information addresses particular program
management practices, data availability and cost, and other
process characteristics.

• Usually Applied During - this section provides selection
guidance information which identifies if the measure is
applicable to a particular software process activity. These
activities are defined to include requirements analysis, design,
implementation, and integration and test. These activities can
take place during any phase of the software life cycle, and can
occur concurrently during the same phase. They should not be
construed to be sequential in nature. The information in this
section also addresses the type of data (estimates or actuals)
which is generally available with respect to the identified
software activities.

• Data Items - Additional Information (Optional)- this section
provides additional information to help specify data items.

• Data Items Typically Collected - this section provides
specification guidance which identifies the attributes of the
measures which are typically measured and collected.

• Typical Collection Level - this section provides specification
guidance which identifies the software activity and design levels
at which the developer typically collects the data items for the
measure.

• Typical Reporting Level - this section provides specification
guidance which identifies the software activity and design levels
at which the data elements are reported by the developer.
These are not necessarily the same as the collection levels.

Part 2 - Selecting and Specifying Program Measures

Page 106

• Count Actuals Based On - this section provides specification
guidance which identifies typical activities or exit criteria for the
listed data elements. This information helps to determine when
a measure is counted as an actual, or when an activity or event
is complete. Normally only one of these options is specified.

• This Measure Answers Questions Such As - this section lists
the typical questions that are addressed by the measure.

Measure - Lines of Code
 Measurement Category - Product Size and Stability
Issue - Growth and Stability

The Lines of Code measure counts the total amount of source code and the amount that has been added,
modified or deleted. The total number of lines of code is a well understood measure which allows estimation
of project cost, required effort, schedule and productivity. Changes in the number of lines of code indicates
development risk due to product size volatility and additional work which may be required.

Selection Guidance
Program Application

Selection Guidance

Data Items Typically Collected

Typical Collection Level

Typical Reporting Level

Count Actuals Based On

-

Applicable to all domains. Commonly used in
weapons applications.
Included in most DoD measurement policies and
some commercial measurement practices.
Used for programs of all size. Less important for
programs where little code is generated such as
those using automatic code generation and visual
programming environments.
Most effective for traditional high order languages
such as Ada, Fortran, and Cobol. Not generally
used for fourth-generation languages such as
Natural and ECOS.

Process Integration
Define Lines of Code for each language. Lines of
code from different languages are not equivalent.
You may want to calculate an effective or
equivalent SLOC count based on source. New
and modified lines would count 100% while reused
code would count at a lower percentage (to
address the required effort to integrate and test the
reused code).
Sometimes difficult to generate accurate estimates
early in the program, especially for new types of
programs. Easy to count actuals once code is
developed using automated tools.

Usually Supplied During
Requirements Analysis (Estimates)
Design (Estimates)
Implementation (Estimates and Actuals)
Integration and Test (Actuals)

Component Name
Source (new, modified, deleted, reused, NDI,
GOTS, or COTS)
Language
Delivery Status (deliverable, non-deliverable)
Category (operational, support)
Build/Release
Number of Lines of Code (LOC)
Number of LOC Added
Number of LOC Deleted
Number of LOC Modified

LOC Definition May Include
Logical Lines
Physical Lines
Blanks
Comments
Executables
Data Declarations

Unit or equivalent

CSCI or equivalent
Build/Release

Release to configuratrion
management
Passing unit test
Passing inspection

This Measure Answers Questions Such As
How accurate was the size estimate that the schedule and effort plans were based on?
How much has the software size changed? In which components have changes occurred?

Measure, Measurement
Category and Issue

identifies the measure,
and related
measurement category
and common issue

Definition & Description

measure definition

type of information
provided

how the measure
is used

Selection Guidance

information needed to
determine if measure
should be used

Program Application

applicability of the
measure to specific
types of programs

applicability to specific
domains, system
characteristcs

applicability to specific
domains, system
characteristcs

general use statement,
DoD and industry

addresses availability of
measurement data

applicability of the
measure to specific
processes.

Process Integration

Usually Supplied During

identifies applicable
software activities and
types of data which is
generally available

Specification Guidance

information needed to
specify data and
interprate requirements
for the specific measure
(augmented by general
specification
requirements on a
separate table)

Data Items Typically
Collected

identifies typical data
which is collected for the
measure

Typical Collection Level

identifies typical software
design and activity levels
at which the data elements
are measured

Data Items- Additional
Information (Optional)

provides information
which augments or
clarifies the data item
section

This Measure Answers Questions
Such As

identifies common questions
addressed by the measure

Typical Reporting Level

identifies typical software
design and activity levels
at which the measure is
reported

Count Actuals Based On

identifies typical exit
criteria used to
determine when a
measure is counted as
an actual

Figure 2-4. Measurement Description Table

Part 2 - Selecting and Specifying Program Measures

Page 107

2.2.3 General Measurement Specification Table

The General Measurement Specification Table should be used in
conjunction with the individual Measurement Description tables
when specifying the data and implementation requirements for
measures which have been selected for implementation. The
included specification guidance applies to all measures in all
Measurement Categories under all Common Issues. It summarizes
the general specification requirements described in Section 1.5 of
this part of the Guide.

2.2.4 Additional Implementation Guidance

Most of the measures listed in the Measurement Description Tables
are basic measures which quantify a single software attribute.
Some of the measures, such as those which fall under the common
issues of Product Quality and Development Performance, are
actually composite measures which are derived using measures
which are listed elsewhere. Productivity, for example, is a
composite Development Performance measure which is calculated
using the Product Size measure under the Growth and Stability
issue and the Labor Hours measure under the Resources and Cost
issue. The composite measures, which also include Defect Density,
are included on separate tables since they are widely used to
address different issues than the more basic related measures.

There are no specific measures listed in the Technical Impact
category under the common issue of Technical Adequacy.
Measures in this category should be defined on a program by
program basis to provide insight into the software technologies and
processes which are critical to the success of the program.
Measures in this category are generally defined to track those
software technologies which are highly leveraged. Many of the
Technical Adequacy measures are derivatives of measures
categorized under other common issues. For example, if a
program’s planned cost and schedule is based upon large increases
in development productivity due to the use of a substantial amount
of reused software, a measure could be defined which provides
information on the relative growth of the reused vs. the newly
developed code. Growth in the new code with concurrent
reductions in the planned amount of reused code may indicate that

Part 2 - Selecting and Specifying Program Measures

Page 108

the reused code may not satisfy the requirements as expected, and
that the actual productivity may be much less than anticipated.

2.2.5 Measurement Selection and Specification Tables

Measurement categories are grouped by the six common issues.
Each category table is followed immediately by the tables for its
constituent measures.

Part 2 - Selecting and Specifying Program Measures

Page 109

Measurement Category -General Measurement Specification
Measurement Category - All
Issue - All

This table provides measurement specification guidance applicable to all measures, and augments the guidance
found in the individual Measurement Description Tables. It provides information which helps to define overall
data and implementation requirements for all selected measures.

Specification Guidance

• Data Items - The data elements for each selected measure and the levels of collection and reporting for
each should be identified.

• Data Types - Measurement data representing plans, changes to plans, and actuals for each measure
should be collected and reported. Plans and estimates should be updated on a regular basis.

• Measurement Definitions - The developer should identify the actual measurement definitions and
methodologies that will be used for each specified measure. If these change over the course of the
program, the definitions and associated interpretations should be updated and provided to the program
office. Differences in the estimation methodologies and the way the actuals are counted for each individual
measure should be identified. The “exit” criteria for counting actuals should be defined for each measure.

• Data Dates - For each measure, but the date that the measurement data was collected and the date that it
is reported should be identified. The data should be provided in a timely manner. The difference between
the date the data was collected and the date the data was provided to the program office should be
minimized.

• Collection Periodicity - Measurement data should be collected on a periodic, not event driven basis. This
is generally monthly on most programs but can be adjusted as necessary. The periodicity may have to be
modified for selected measures due to software process constraints.

• Measurement Scope - If more than one organization is involved in developing the software for a program,
measurement data should be collected from each and identified by source. Different definitions for the

same measures should be identified.

• Program Phase - The measures which are selected and integrated into the program should generally be
applied to all life cycle phases, including program planning, development, and software support.
Throughout all phases measurement plans and estimates should be continuously updated and reported.

• Data Reporting Mechanisms - The reporting mechanisms for delivering data to the program office from the
developer should be identified for each measure. Every effort should be given to establishing the
interfaces required to electronically transfer the data on a periodic basis.

Part 2 - Selecting and Specifying Program Measures

Page 110

Measurement Category - Milestone Performance
Issue - Schedule and Progress

The Milestone Performance measures provide basic schedule and progress information for key software
development activities and events. The measures also help to identify and assess dependencies among
software development activities and events. Monitoring changes in schedules allows the program manager to
assess the risk in achieving future milestones.

Program Application
• Basic measurement category applicable to most programs.
• Applicable to all software process models.
• Useful during program planning, development, and software support phases.

Measures Included in this Category
• Milestone Dates

Limitations
• The measures in this category do not address the degree of individual activity completion or the

amount of effort to complete a scheduled activity or task.
• These measures do not address the relative importance of key activities (except for the identification of

critical path activities).

Related Measurement Categories
• Work Unit Progress
• Productivity
• Schedule Performance

Example Indicator
• Milestone Dates (PSM Part 3, Section 3.1)

Part 2 - Selecting and Specifying Program Measures

Page 111

Measure - Milestone Dates
Measurement Category - Milestone Performance
Issue - Schedule and Progress

The Milestone Dates measure consists of the start and end dates for software activities and events. The
measure provides an easy to understand view of the status of scheduled software activities and events.
Comparison of plan and actual milestone dates provides useful insight into both significant and repetitive
schedule slips at the software activity level.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Basic measure applicable to all domains. • Activity or Event Name
• Included in most DoD measurement policies and • Component Name

commercial measurement practices. • Start Date
• Generally applicable to all sizes and types of programs. • End Date
• Useful during program planning, development, and • Build/Release

software support phases. Some software support • Responsible Organization
programs may be considered level of effort tasks and • Dependent Activity or Event Name
may not have associated milestones.

Typical Collection Level
Process Integration • CSCI or equivalent
• Required data is generally easily obtained from program • Key software activities and events

scheduling systems and/or documentation. Data
should be focused on software activities and events, Typical Reporting Level
particularly those affecting the critical path or risk items . • CSCI or equivalent

• If dependency data is collected, slips in related • Key software activities and events
activities can be more easily and accurately projected • Build/Release
and assessed.

Count Actuals Based On
Usually Applied During • Customer sign-off
• Requirements Analysis (Estimates and Actuals) • Action items closed
• Design (Estimates and Actuals) • Documents baselined
• Implementation (Estimates and Actuals) • Milestone review held
• Integration and Test (Estimates and Actuals) • Successful completion of tasks

This Measure Answers Questions Such As
• Is the current schedule realistic?
• How many activities are concurrently scheduled?
• How often has the schedule changed?

Part 2 - Selecting and Specifying Program Measures

Page 112

Measurement Category - Work Unit Progress
Issue - Schedule and Progress

Work Unit Progress measures address progress based on the completion of work units that combine
incrementally to form a complete software activity or product. If objective completion criteria are defined,
Work Unit Progress measures are extremely effective for assessing progress at any point in the program .
They are also useful for projecting completion dates for the activity or product.

Program Application
• Basic measurement category applicable to most programs.
• Applies to all software process models.
• Useful during development and software support phases.

Measures Included in this Category
• Components Designed
• Components Implemented
• Components Integrated and Tested
• Requirements Allocated
• Requirements Tested
• Test Cases Completed
• Paths Tested
• Problem Reports Resolved
• Reviews Completed
• Changes Implemented

Limitations
• These measures do not weight difficult or critical activities or products. All activities are usually assumed

to be of the same level of importance.

Related Measurement Categories
• Milestone Performance
• Effort
• Product Size and Stability
• Functional Size and Stability

Additional Information
• Components may be defined differently for each program. Components can be units, CSCIs, objects,

interfaces, screens, reports, packages, icons, primitives, or other measurable product structures. Problem
reports are sometimes considered to be components, especially with respect to software maintenance
activities during the software support phase. COTS/GOTS and other non-developed or reusable software
products can also be counted as components. Some components can be aggregated to form higher level
components (for example, units to CSCIs to builds). These can be referred to as sub-components.

Example Indicator
• Design Progress (PSM Part 3, Section 3.2)

Part 2 - Selecting and Specifying Program Measures

Page 113

Measure - Components Designed
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Components Designed measure counts the number of software components that have completed
preliminary or detailed design. Early in design, planning changes should be expected as the design matures.
Later in the process, an increase in the planned number of components can be an indication of unplanned or
excessive growth. A comparison of planned and actual components is very effective for assessing design
progress.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Component Name
• Used on medium to large programs. • Number of Sub-Components
• Useful during development and software support Completing Design

phases. Not generally used on programs without a • Build/Release
design activity such as software support programs which
are focused on problem resolution or COTS integration Typical Collection Level
programs. • Unit or equivalent

Process Integration Typical Reporting Level
• Easier to collect if formal reviews, inspections, or • CSCI or equivalent

walkthroughs are included in the development process. • Build/Release
• Data sometimes available from configuration

management systems or design tools. Count Actuals Based On
• Data is generally available if there is a mature and • Completion of component design

disciplined design process reviews, inspections, or walkthroughs
• Release to configuration

Usually Applied During management
• Requirements Analysis (Estimates) • Resolution of action items
• Design (Estimates and Actuals)

This Measure Answers Questions Such As
• Are components completing design as scheduled?
• Is the planned rate of design completion realistic?
• What components are behind schedule?

Part 2 - Selecting and Specifying Program Measures

Page 114

Measure - Components Implemented
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Components Implemented measure counts the number of software components that have been
coded or modified and have completed unit test. An increase in the number of planned components is an
indication of unplanned or excessive growth. A comparison of planned and actual components is one of the most
effective measures of implementation progress.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Component Name
• Used on medium to large programs. • Number of Sub-Components
• Useful during development and software support Implemented

phases. Not generally used on programs without a • Build/Release
implementation activity such as COTS integration
programs or programs using automatic code generation. Typical Collection Level

• Unit or equivalent
Process Integration
• Data sometimes available from the configuration Typical Reporting Level

management system . • CSCI or equivalent
• Easy to collect, data is generally available. • Build/Release

Usually Applied During Count Actuals Based On
• Design (Estimates) • Passing inspection
• Implementation (Estimates and Actuals) • Passing unit test

• Release to configuration management

This Measure Answers Questions Such As
• Are components implemented as scheduled?
• Is the planned rate of implementation progress realistic?
• What components are behind schedule?

Part 2 - Selecting and Specifying Program Measures

Page 115

Measure - Components Integrated and Tested
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Components Integrated and Tested measure counts the number of software components that have been
successfully integrated and tested. The measure is an indication of component integration and test progress.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Component Name
• This measure is important when integrating COTS and • Number of Sub-Components

reusable software components. Integrated and Tested
• Useful during development and software support • Number of Sub-Components

phases. Integrated and Tested Successfully
• Test Sequence Name

Process Integration • Build/Release
• Requires a disciplined testing process with separate

tests per component(s) allocated to defined test Typical Collection Level
sequences. • Unit or equivalent

• Can be applied for each unique test sequence (i.e.
CSCI test, integration test, system test), including Typical Reporting Level
“dry-runs” • CSCI or equivalent

• Generally one of the more difficult work unit progress • Test Sequence
measures to collect since most integration and test • Build/Release
activities are based on requirements or functions
instead of components. Count Actuals Based On

• Successfully passing all component
Usually Applied During tests in the appropriate test
• Implementation (Estimates) sequence
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• Are components completing integration and test as scheduled?
• Is the planned rate of integration and test completion realistic?
• What components are behind schedule?

Part 2 - Selecting and Specifying Program Measures

Page 116

Measure - Requirements Allocated
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Requirements Allocated measure counts the number of defined requirements which have been allocated to
software design components and test cases. The measure is an indication of software design progress.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Requirements Identifier
• Useful during development and software support • Design Component Name

phases. Not generally used on programs without a • Test Case Identifier
requirements analysis or design activity such as
software support programs which are focused on Typical Collection Level
problem resolution. • Requirement

Process Integration Typical Reporting Level
• Not all requirements are directly testable. Some are • CSCI or equivalent

verified by inspection.
• There may not be a direct relationship between design Count Actuals Based On

components and test cases. Requirements may need • Completion of specification review
to be allocated separately. • Baselining of specifications

• Requires a good requirements traceability process. If • Baselining of Requirements
an automated design tool is used, the data is more Traceability Matrix
readily available.

• This is normally difficult to collect. It often requires a lot
of manual effort.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates and Actuals)

This Measure Answers Questions Such As
• Have all of the requirements been allocated to software design components?
• Which requirements are validated by which tests?
• How many requirements are directly testable?

Part 2 - Selecting and Specifying Program Measures

Page 117

Measure - Requirements Tested
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Requirements Tested measure counts of the number of stated and derived requirements that have been
successfully tested. The measure addresses the degree to which required functionality has been successfully
demonstrated against the specified requirements, as well as the amount of testing that has been performed. This
measure provides an excellent measure of test progress. This measure is also known as “Breadth of Testing”.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Number of Requirements
• Generally applicable to all sizes and types of programs, • Number of Requirements Tested

except those in which requirements cannot be traced • Number of Requirements Tested
to test cases. Successfully

• Useful during development and software support • Test Sequence Name
phases. • Build/Release

Process Integration Typical Collection Level
• Requires disciplined requirements traceability and • Requirement

testing processes to implement successfully. Allocated
requirements should be testable and mapped to tests. Typical Reporting Level

• Can be applied for each unique test sequence (i.e. CSCI • Test Sequence
test, integration test, system test), including “dry-runs”. • Build/Release

• One of the more difficult work unit progress measures to
collect since requirements often do not map to test Count Actuals Based On
procedures. It is also sometimes difficult to objectively • Successful completion of all tests
determine if a requirement has been successfully in the appropriate test sequence
tested.

• Some requirements may not be testable until late in the
testing process. Others are not directly testable.

Usually Applied During
• Implementation (Estimates)
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• Are the requirements being tested as scheduled?
• Has the testing been successful?
• What requirements (functions) are behind schedule?
• How much of the functionality has been tested?

Part 2 - Selecting and Specifying Program Measures

Page 118

Measure - Test Cases Completed
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Test Cases Completed measure counts the number of test cases that have been attempted and
those that that have been completed successfully. This measure can be used in conjunction with the
Requirements Tested measure to evaluate test progress. This measure allows assessment of software
quality, based on the proportion of attempted test cases that are successfully executed. This measure is
one of the best measures of test progress.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Test Sequence Name
• Generally applicable to all sizes and types of programs. • Number of Test Cases
• Useful during development and software support • Number of Test Cases Attempted

phases. • Number of Test Cases Passed
• Build/Release

Process Integration
• Need disciplined test planning and tracking processes Alternates to Test Cases Include

to implement successfully. • Test Procedures
• Can be applied for each unique test sequence (i.e. CSCI • Test Steps

test, integration test, system test), including “dry-runs”.
• There should be a mapping between defined test cases Typical Collection Level

and requirements. This allows an analysis of which • Test Case
functions are passing test and which are not.

• Easy to collect. Most programs define and allocate a Typical Reporting Level
quantifiable number of test cases to each software test • Test Sequence
sequence. • Build/Release

Usually Applied During Count Actuals Based On
• Implementation (Estimates and Actuals) • Successful completion of each test
• Integration and test (Estimates and Actuals) case in the appropriate test sequence

This Measure Answers Questions Such As
• Is test progress sufficient to meet the schedule?
• Is the planned rate of testing realistic?
• What functions are behind schedule?

Part 2 - Selecting and Specifying Program Measures

Page 119

Measure - Paths Tested
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Paths Tested measure counts the number of logical paths successfully tested. The measure reports the
degree to which the software has been successfully demonstrated and indicates the amount of testing that has
been performed. This measure is also called “Depth of Testing”.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Component Name
• Applicable to most types of programs. Especially • Number of Paths

important for those with high reliability requirements, • Number of Paths Tested
security implications, or catastrophic failure potential. • Number of Paths Tested Successfully

• Not generally used for COTS or reused code. • Test Sequence
• Useful during development and software support • Build/Release

phases.
Alternatives to Paths Include

Process Integration • Executable Statements
• Usually applied on a cumulative basis across all • Decisions

test sequences (i.e. CSCI test, integration test, system
test). Typical Collection Level

• Often used in conjunction with Cyclomatic Complexity. • CSCI or equivalent
• Difficult to collect - requires the use of test tools that

can verify test paths covered. These test tools often Typical Reporting Level
require instrumentation of the code. • CSCI or equivalent

• Difficult to use on large programs due to the large • Test Sequence
number of paths. • Build/Release

Usually Applied During Count Actuals Based On
• Implementation (Estimates and Actuals) • Successful completion of each test in
• Integration and Test (Actuals) the appropriate test sequence

This Measure Answers Questions Such As
• Have all of the paths been successfully tested?
• What are the minimum number of test cases required to completely test the software?
• What percentage of the paths are represented in the testing approach?

Part 2 - Selecting and Specifying Program Measures

Page 120

Measure - Problem Reports Resolved
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Problem Reports Resolved measure counts the number of software problems reported and
resolved. This measure provides an indication of product maturity and readiness for delivery. The rates
at which problem reports are written and closed can be used in a straight-line estimate of test completion.
This measure can also be used as an indication of the efficiency of the problem resolution process.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Component Name
• Applicable to all sizes and types of programs. • Priority
• Useful during development and software support • Number of Software Problems

phases. Reported
• Number of Software Problems

Process Integration Resolved
• Many programs have acceptance criteria based on the

number of open problem reports, by priority. This Typical Collection Level
measure is useful in tracking to those requirements. • CSCI or equivalent

• The amount of test activity has a significant impact
on this measure. Test personnel generally alternate Typical Reporting Level
between testing and fixing problems. You may want • CSCI or equivalent
to normalize this measure using some measure of
Test Progress. Count Actuals Based On

• Data is generally available. Data is easier to collect • Fix developed
when an automated problem tracking system is used. • Fix implemented

• On development programs, data is generally available • Fix integrated
during integration and test. Problem report data is more • Fix tested
difficult to collect earlier (during requirements analysis,
design, and implementation), because the formal problem
reporting system is usually not in place and rigidly
enforced. When this data is available, it provides very
good progress information.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• Are known problem reports being closed at a sufficient rate to meet the test completion date?
• Is the product maturing (Is the problem report discovery rate going down)?
• When will testing be complete?
• What components have the most open problem reports?

Part 2 - Selecting and Specifying Program Measures

Page 121

Measure - Reviews Completed
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Reviews Completed measure counts the number of reviews successfully completed, including both internal
developer and program manager reviews. The measure provides an indication of progress in completing review
activities.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Component Name
• Used on medium to large programs. Not • Number of Reviews

generally used on COTS and reusable software • Number of Reviews Scheduled
components. • Number of Reviews Completed

• Useful during development and software support Successfully
phases. • Build/Release

Process Integration Alternatives to Reviews Include
• Easy to collect if formal reviews are a part of the • Inspections

development process. • Walkthroughs

Usually Applied During Typical Collection Level
• Requirements Analysis (Estimates and Actuals) • Unit or equivalent
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals) Typical Reporting Level

• CSCI or equivalent
• Build/Release

Count Actuals Based On
• Completion of review
• Resolution of all associated action

items

This Measure Answers Questions Such As
• Are development review activities progressing as scheduled?
• Do the completed products meet the defined standards (Are components passing the reviews)?
• What components have failed their review?

Part 2 - Selecting and Specifying Program Measures

Page 122

Measure - Changes Implemented
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Changes Implemented measure counts the number of change requests affecting a product. The
measure provides an indication of the amount of rework required and performed. It only identifies the
number of changes, and does not report on the functional impact of changes or the amount of effort
required to implement them.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Priority
• Applicable to all sizes of programs. • Number of Software Change •

Useful during the development phase. Not generally Requests Reported
used for integration programs incorporating COTS and • Number of Software Change
reused code. Often used for programs in the software Requests Completed
support phase.

Options to Change Requests
Process Integration • Enhancements
• Often used on iterative developments such as • Corrective Action Reports

prototyping.
• Data should be available from most programs . Typical Collection Level

• Change Request
Usually Applied During
• Requirements Analysis (Actuals) Typical Reporting Level
• Design (Actuals) • System
• Implementation (Actuals)
• Integration and Test (Actuals) Count Actuals Based On

• Change implemented
• Change integrated
• Change tested

This Measure Answers Questions Such As
• How many change requests have impacted the software?
• Are change requests being implemented at a sufficient rate to meet schedule?
• Is the trend of new change requests decreasing as the program nears completion?

Part 2 - Selecting and Specifying Program Measures

Page 123

Measurement Category - Schedule Performance
Issue - Schedule and Progress

Schedule Performance measures address earned value by comparing the budgeted cost of work performed to the
budgeted cost of work scheduled. These measures can be used to identify critical path issues, schedule
conflicts, or potential cost overruns.

Program Application
• Measurement category applicable to most programs.
• Applies to all software process models.
• Used during development and software support phases.

Measures Included in this Category
• Schedule Variance

Limitations
• Schedule progress is a product of the validity of the schedule, the availability of funding and other

resources, and personnel resources. These factors are not identified by schedule performance measures.
Other measurement categories provide better information about software schedule and progress.

• Schedule performance systems can be difficult to establish for software. A detailed software WBS
must be developed that includes quantifiable exit criteria.

• Measurement of software performance is often difficult, due to insufficient detail in the software Work
Breakdown Structure (WBS) and associated problems with reporting of actual progress.

Related Measurement Categories
• Milestone Performance
• Cost Performance
• Effort

Example Indicator
• Schedule Variance (PSM Part 3, Section 3.3)

Part 2 - Selecting and Specifying Program Measures

Page 124

Measure - Schedule Variance
Measurement Category - Schedule Performance
Issue - Schedule and Progress

The Schedule Variance measure is the difference between the budgeted cost of work performed and the
budgeted cost of work scheduled, for each WBS element The measure reports schedule progress,
in terms of variance from original cost earned value estimates.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • WBS or Task Element
• Applicable to any program that uses an earned value • Budgeted Cost of Work Scheduled

cost accounting system. The DoD defined (BCWS)
Cost/Schedule Control System Criteria (C/SCSC) • Budgeted Cost of Work Performed
apply to programs based on size and cost. (BCWP)

• Useful during development and software support
phases. Typical Collection Level

• Limited in applicability if costs are planned and • WBS or task element
expended on a level of effort basis.

Typical Reporting Level
Process Integration • WBS or task element
• C/SCSC data is required on most large DoD programs,

so it is often readily available. This data should be Count Actuals Based On
based on a validated cost accounting system. • WBS element complete (to defined

• This can be difficult to track without an automated exit criteria)
system tied to the accounting function. • WBS element percent complete

• This data tends to lag other measurement information (based on engineering judgment)
due to formal reporting requirements. • WBS element percent complete

(based on underlying objective
measures)

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• Is the schedule being met?
• How far ahead/behind schedule is the program?
• What WBS elements or tasks are behind/ahead of schedule?

Part 2 - Selecting and Specifying Program Measures

Page 125

Measurement Category - Incremental Capability
Issue - Schedule and Progress

Incremental Capability measures count the functional or product content associated with each incremental
delivery. An incremental delivery may be a product shipped to a customer or it may be an internal build delivered
to the next phase of development. These measures are used to determine if capability is being developed as
scheduled or being delayed to future deliveries.

Program Application
• Measurement category applicable to programs that have multiple deliveries.
• Applies to software process models based on incremental development.
• Useful during development and software support phases.

Measures Included in this Category
• Build Content - Component
• Build Content - Function

Limitations
• Incremental software development often results in release of software with incomplete functions. It is

sometimes difficult to determine if all of the planned capability is completed in any given increment.
• Requires a straightforward mapping of function or component to the increment . Difficult to collect and

assess if measured components or functions are partitioned across increments.

Related Measurement Categories
• Product Size and Stability
• Functional Size and Stability
• Productivity

Example Indicator
• Incremental Build Content (PSM Part 3, Section 3.4)

Part 2 - Selecting and Specifying Program Measures

Page 126

Measure - Build Content - Component
Measurement Category - Incremental Capability
Issue - Schedule and Progress

The Build Content - Component measure identifies the components which are included in incremental
builds. The measure indicates progress in the incremental products. Build content will often be deferred or
removed in order to preserve the scheduled delivery date. It is easier to track incorporation of capability by
component (rather than by function), since it is relatively easy to specify whether or not a component has been
integrated. However, this provides less information, since the correlation between components and functionality
is not always well defined.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Build/Release
• Generally applicable to all sizes and types of programs. • Component Name
• Useful during development and software support • Number of Sub-Components

phases. • Number of Sub-Components
Integrated Successfully

Process Integration
• Requires a formal, detailed list of content by increment. Typical Collection Level

This content must be defined at the component level. • Unit or equivalent
• Easy to collect, especially if the program has a detailed tracking

mechanism.
• To effectively measure the content of the software at the Typical Reporting Level

components build/release level, the lower level • CSCI or equivalent
subcomponents which comprise the build/release • Build/Release
must individually be complete with respect to
defined criteria. Count Actuals Based On

• Successful integration
Usually Applied During • Successful testing
• Implementation (Estimates)
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• Are components being incorporated as scheduled?
• Will each increment contain the specified components?
• Which components have to be deferred or eliminated?
• What components have been added?
• Is development risk being deferred?

Part 2 - Selecting and Specifying Program Measures

Page 127

Measure - Build Content - Function
Measurement Category - Incremental Capability
Issue - Schedule and Progress

The Build Content - Function measure identifies the content of incremental builds. The measure indicates the
progress in the incorporation of incremental functionality. Build content will often be deferred or removed in order
to preserve the scheduled delivery date.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Build/Release
• Generally applicable to all sizes and types of programs. • Function Name
• Useful during development and software support • Number of Sub-Functions

phases. • Number of Sub-Functions Integrated
Successfully

Process Integration
• Requires a formal, detailed list of functions by Typical Collection Level

increment. • Function or equivalent
• Feasible to collect if the program has a detailed tracking

mechanism. Typical Reporting Level
• It is often difficult to identify whether a function is • Function or equivalent

incorporated in its entirety. A considerable amount of testing • Build/Release
and analysis must be done to determine if all aspects of a
function are incorporated. Count Actuals Based On

• Successful integration
Usually Applied During • Successful testing
• Design (Estimates)
• Implementation (Estimates)
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• Is functionality being incorporated as scheduled?
• Will each increment contain the specified functionality?
• Which functionality has to be deferred?

Part 2 - Selecting and Specifying Program Measures

Page 128

Measurement Category - Effort Profile
Issue - Resources and Cost

Effort Profile measures identify the amount of effort expended on defined software activities or products over
time. These measures may be used to assess the adequacy of planned effort and analyze the actual allocation
of labor. They are essential to evaluating software development productivity. These measures are especially
critical since software is a very labor intensive process.

Program Application
• Basic measurement category applicable to most programs.
• Applicable to all software process models.
• Useful during program planning, development, and software support phases.

Measures Included in this Category
• Effort

Limitations
• The utility and timeliness of the measures are generally limited by the structure and capabilities of the

financial system, which may be difficult to change.
• Measures are not always available at lower levels of product and activity detail.
• Actual effort, especially uncompensated overtime, may not be reported.

Additional Information
• Software activities typically include system engineering, software engineering, system design, software

design, software documentation, coding, unit test, CSCI integration and test, build/release integration and
test, system integration and test, software integration and test, software program management,
configuration management, and quality assurance.

Example Indicator
• Effort Allocation (PSM Part 3, Section 3.5)

Part 2 - Selecting and Specifying Program Measures

Page 129

Measure - Effort
Measurement Category - Effort Profile
Issue - Resources and Cost

The Effort measure counts the number of hours of effort applied to software tasks. This is a
straightforward, generally understood measure. It can be categorized by activity as well as by
product. This measure usually correlates directly with software cost, but can also be used to address other
common issues including Schedule and Progress and Development Performance.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Basic measure applicable to all domains. • Organization
• Included in most DoD measurement policies and • WBS or Task Element

commercial measurement practices. • Labor Category
• Generally applicable to all sizes and types of programs. • Number of Labor Hours
• Useful during program planning, development, and

software support phases. Some software support Typical Collection Level
programs with fixed staffing levels may not track this • WBS or task element
measure.

Typical Reporting Level
Process Integration • WBS or task element
• Data usually derived from a financial accounting and • Organization

reporting system and/or separate time card system.
• All labor hours applied to the software tasks should be Count Actuals Based On

collected, including overtime. The overtime data is • End of financial reporting period
sometimes difficult to collect.

• Most effective when financial accounting and reporting
systems are directly tied to software products and
activities at a low level of detail.

• If labor hours are not explicitly provided, data may be
approximated from staffing and/or cost data. Labor
hours are sometimes considered proprietary data.

• The labor categories and activities that comprise the
software tasks must be explicitly defined for each
organization.

• Labor Hours may also be reported as Days, Weeks, or
Months with associated conversions.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• Are development resources being applied according to plan?
• Are certain tasks or activities taking more/less effort than expected?
• Is the effort profile realistic?

Part 2 - Selecting and Specifying Program Measures

Page 130

Measurement Category - Staff Profile
Issue - Resources and Cost

Staff Profile measures characterize the number and experience of personnel assigned to a program. These
measures also can be used to evaluate the rate at which people are added and removed from a program.

Program Application
• Measurement category applicable to most programs.
• Applies to all software process models.
• Useful during program planning, development, and software support phases.

Measures Included in this Category
• Staff Level
• Staff Experience
• Staff Turnover

Limitations
• Measures may not capture the total effort applied to a program because they do not distinguish

between full and part-time personnel. Effort Allocation provides a more precise indicator of total effort
applied.

Related Measurement Categories
• Effort
• Milestone Performance

Example Indicator
• Staff Experience (PSM Part 3, Section 3.6)

Part 2 - Selecting and Specifying Program Measures

Page 131

Measure - Staff Level
Measurement Category - Staff Profile
Issue - Resources and Cost

The Staff Level measure counts the total number of personnel allocated to software related activities.
The measure is used to determine if sufficient personnel are available. It can also provide an early
indication of possible schedule slips and cost overruns or underruns.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Organization
• Generally applicable to all sizes and types of programs. • Activity
• Useful during program planning, development, and • Labor Category

software support phases. Some software support • Number of Personnel
programs with fixed staffing levels may not track this
measure. Typical Collection Level

• Activity
Process Integration
• Data should be available from most programs. The Typical Reporting Level

Labor Hours measure provides more detailed • Organization
information.

• Total staffing is generally available from most programs Count Actuals Based On
at the system level. Counting software personnel may • End of financial reporting period
be difficult because they may not be allocated to the
project on a full-time basis or they may not be assigned
to strictly software related tasks.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• Are sufficient development resources available and applied?
• Are certain activities or functions taking more staff than expected?

Part 2 - Selecting and Specifying Program Measures

Page 132

Measure - Staff Experience
Measurement Category - Staff Profile
Issue - Resources and Cost

The Staff Experience measure counts the total number of software personnel with experience in defined areas.
The measure is used to determine whether sufficient experienced personnel are available and used. The
experience factors are based on the requirements of each individual program (such as domain or language).
Experience is usually measured in years, which does not always equate to capability.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Organization
• Applicable to programs that require particular expertise • Experience Factor

to complete. • Number of Personnel
• Useful during program planning, development, and • Number of Years of Experience

software support phases.
Typical Experience Factors

Process Integration • Language
• Requires a personnel database that maintains • System Engineering

experience data. • Domain
• Difficult to collect and keep up-to-date as people are • Hardware

added/removed from a project. Generally has to be • Application
done manually. • Platform

Usually Applied During Typical Collection Level
• Requirements Analysis (Actuals) • Organization
• Design (Actuals)
• Implementation (Actuals) Typical Reporting Level
• Integration and Test (Actuals) • Organization

Count Actuals Based On
• Prior to contract award
• Annual performance evaluation

This Measure Answers Questions Such As
• Are sufficient experienced personnel available?
• Will additional training be required?

Part 2 - Selecting and Specifying Program Measures

Page 133

Measure - Staff Turnover
Measurement Category - Staff Profile
Issue - Resources and Cost

The Staff Turnover measure counts staff losses and gains. A large amount of turnover impacts learning curves,
productivity, and the ability of the software developer to build the system with the resources provided within cost
and schedule. This measure is most effective when used in conjunction with the Staff Experience measure.
Losses of more experienced personnel are more critical.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Organization
• Applicable to programs of all sizes and types. • Number of Personnel
• Useful during development and software support • Number of Personnel Gained (per

phases. period)
• Number of Personnel Lost (per

Process Integration period)
• Very difficult to collect on contractual programs - most

organizations consider this proprietary information. May Typical Collection Level
be more readily available on in-house programs. • Organization

• It is useful to categorize the number of personnel lost
into planned and unplanned losses.

Typical Reporting Level
Usually Applied During • Organization
• Requirements Analysis (Actuals)
• Design (Actuals) Count Actuals Based On
• Implementation (Actuals) • End of financial reporting period
• Integration and Test (Actuals) • Organization restructuring or

new organizational charts
• End of program activities or

milestones

This Measure Answers Questions Such As
• How many people have been added/have left the program?
• How are the experience levels being affected by the turnover rates?
• What areas are most affected by turnover?

Part 2 - Selecting and Specifying Program Measures

Page 134

Measurement Category - Cost Performance
Issue - Resources and Cost

Cost Performance measures report the difference between budgeted and actual costs for a specific product or
activity. They are used to assess whether the program can be completed within cost constraints and to identify
potential cost overruns.

Program Application
• Measurement category applicable to most programs.
• Required for major DoD programs.
• Applicable to all software process models.
• Useful during program planning, development and software support phases.

Measures Included in this Category
• Cost Variance
• Cost Profile

Limitations
• Cost performance systems can be difficult to establish for software. A detailed software WBS must be

developed that includes quantifiable exit criteria.
• Cost is not generally the best measure of software performance due to insufficient detail in the

software WBS and associated problems with the reporting of actual progress.

Related Measurement Categories
• Milestone Performance
• Effort

Example Indicator
• Cost Profile (PSM Part 3, Section 3.7)

Part 2 - Selecting and Specifying Program Measures

Page 135

Measure - Cost Variance
Measurement Category - Cost Performance
Issue - Resources and Cost

The Cost Variance measure is a comparison between the cost of work performed and the budget, based on
dollars budgeted per WBS element. The measure can be used to identify cost overruns and underruns.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • WBS or Task Element
• Applicable to any program that uses an earned value • Budgeted Cost of Work Performed

cost accounting system. The DoD defined (BCWP)
Cost/Schedule Control System Criteria (C/SCSC) apply • Actual Cost of Work Performed
to programs based on size and cost. (ACWP)

• Useful during development and software support
phases. Typical Collection Level

• Limited in applicability if costs are planned and expended on • WBS or task element
a level of effort basis.

Typical Reporting Level
Process Integration • WBS or task element
• C/SCSC data is required on most large DoD contracts,

so it is often readily available. This data should be Count Actuals Based On
based on a validated cost accounting system. If this • WBS element complete (to defined
data is not required, then the cost profile measure can exit criteria)
be used instead. • WBS element percent complete

 • This can be difficult to track without an automated (based on engineering judgment)
system tied to the accounting department. due to formal reporting requirements.

• This data tends to lag other measurement information

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• Are program costs in accordance with budgets?
• What is the projected completion cost?
• What WBS elements or tasks have the greatest variance?

Part 2 - Selecting and Specifying Program Measures

Page 136

Measure - Cost Profile
Measurement Category - Cost Performance
Issue - Resources and Cost

The Cost Profile measure counts budgeted and expended cost. The measure provides information
about the amount of money expended on a program, compared to budgets.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • WBS or Task Element
• Applicable to programs of all sizes and types. Used to • Cost (dollars)

evaluate costs for those programs that do not use
cost/schedule control system criteria (C/SCSC). Typical Collection Level

• Useful during program planning, developm ent, and • WBS or task element
software support phases.

Typical Reporting Level
Process Integration • WBS or task element
• Data should come from an automated accounting

system. This data tends to lag other measurement Count Actuals Based On
information due to formal reporting requirements. • WBS element complete (to defined

• Should be relatively easy to collect at a high level. Not exit criteria)
all programs, however, will define software WBS • WBS element percent complete
elements to a sufficient level of detail. (based on engineering judgment)

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• Are program costs in accordance with budgets?
• Will the target budget be achieved or will there be an overrun or surplus?

Part 2 - Selecting and Specifying Program Measures

Page 137

Measure - Environmental Availability
Issue - Resources and Cost

Environmental Availability measures indicate the availability and utilization of tool and facility resources.
Resources include those used for development, integration and test, file build, maintenance or operations.
Recommended for programs in which key resources are shared with or provided by other programs or are
suspected from the outset to be inadequate. These measures are used to address the adequacy of resources.

Program Application
• Measurement category applicable to all programs with resource constraints.
• Applies to all software process models
• Useful during program planning, development, and software support phases.

Measures Included in this Category
• Resource Availability Dates
• Resource Utilization

Limitations
• These measures do not address whether resources are used most effectively.

Related Measurement Categories
• Schedule Performance
• Productivity
• Process Maturity

Example Indicator
• Resource Utilization Indicator (PSM Part 3, Section 3.8)

Part 2 - Selecting and Specifying Program Measures

Page 138

Measure - Resource Availability Dates
Measurement Category - Environment Availability
Issue - Resources and Cost

The Resource Availability Dates measure lists the dates for the availability of key resources. The measure
is used to determine if key resources are available when needed to support development and testing. It
can be integrated in the milestone dates measure.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Resource Name
• More important for programs with constr ained support • Availability Date

resources.
• Useful during development and software support Typical Collection Level

phases. • Resource

Process Integration Typical Reporting Level
• Required data is generally easily obtained from program • Resource

scheduling systems or documentation.
• Resources may include software, hardware, integration Count Actuals Based On

and test facilities, tools, other equipment, or office space . • Demonstration of the intended
service
Normally only key resources are tracked. Personnel
resources are not included in this measure - they are
tracked with Staff Profile.

• Include both government-furnished and
developer-furnished resources.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• Are key resources available when needed?
• Is the availability of support resources impacting p rogress?

Part 2 - Selecting and Specifying Program Measures

Page 139

Measure - Resource Utilization
Measurement Category - Environment Availability
Issue - Resources and Cost

The Resource Utilization measure counts of the hours of resource time scheduled, available, not
available due to maintenance downtime, and used. It is used on programs that have resource constraints, and is
usually focused only on key resources. This measure provides an indication of whether key resources are
sufficient and if they are used effectively.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Resource Name
• More important for programs with constrained support • Scheduled Hours

resources. Especially important during integration and • Available Hours
test activities. • Used hours

• Useful during development and software support • Hours Unavailable due to
phases. Maintenance

Process Integration Typical Collection Level
• Relatively easy to collect at a high level. Easier to • Resource

collect if a resource monitor or resource scheduling
system is in place. Typical Reporting Level

• Resources may include software, hardware, integration • Resource
and test facilities, tools, and other equipment. Normally
only key resources are tracked. Count Actuals Based On

• Include both government-furnished and • End of reporting period
developer-furnished resources.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• Are sufficient resources available?
• How efficiently are resources being used?

Part 2 - Selecting and Specifying Program Measures

Page 140

Measurement Category - Product Size and Stability
Issue - Growth and Stability

Product Size and Stability measures quantify the physical size of a software product. Product size is a
critical factor for estimating development schedule and cost. These measures also provide information
about the amount and frequency of change to software products which is especially critical late in the
development.

Program Application
• Basic measurement category applicable to most programs.
• Measures in this category are usually selected based on domain characteristics.
• Applicable to all software process models.
• Useful during program planning, development, and software support phases.

Measures Included in this Category
• Lines of Code
• Number of Components
• Words of Memory
• Database Size

Limitations
• Product size measures do not always directly map to the amount of functionality in the system.
• Measures in this category do not generally address software quality, complexity, or difficulty.
• Accurate estimates are dependent on the availability of good historical data or engineering experience.
• Reported changes of software product size often occur too late to correct the underlying problems.

Measurement of requirements or design changes provide earlier warnings of related problems.

Related Measurement Categories
• Productivity
• Functional Size and Stability
• Work Unit Progress

Additional Information
• Components may be defined differently for each program. Components can be units, CSCIs, objects,

interfaces, screens, reports, packages, icons, primitives, or other measurable product structures. Problem
reports are sometimes considered to be components, especially with respect to software maintenance
activities during the software support phase. COTS/GOTS and other non-developed or reusable software
products can also be counted as components. Some components can be aggregated to form higher level
components (for example, units to CSCIs to builds). These can be referred to as sub-components.

Example Indicator
• Software Size (PSM Part 3, Section 3.9)

Part 2 - Selecting and Specifying Program Measures

Page 141

Measure - Lines of Code
Measurement Category - Product Size and Stability
Issue - Growth and Stability

The Lines of Code measure counts the total amount of source code and the amount that has been added,
modified, or deleted. The total number of lines of code is a well understood measure which allows estimation of
project cost, required effort, schedule, and productivity. Changes in the number of lines of code indicate
development risk due to product size volatility and additional work which may be required.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. Commonly used in weapons • Component Name

applications. • Source (new, modified, deleted, •
Included in most DoD measurement policies and some reused, NDI, GOTS, or COTS)
commercial measurement practices. • Language

• Used for programs of all size. Less important for • Delivery Status (deliverable, non-
programs where little code is generated such as those deliverable)
using automatic code generation and visual • Category (operational, support)
programming environments. • Build/Release

• Most effective for traditional high order languages such • Number of Lines of Code (LOC)
as Ada, FORTRAN, and Cobol. Not generally used for • Number of LOC Added

 fourth-generation languages such as Natural and ECOS. • Number of LOC Deleted
• Not usually tracked for COTS software unless changes • Number of LOC Modified

are made to the source code.
• Useful during program planning, development, and

software support phases. LOC Definition May Include
• Logical Lines

Process Integration • Physical Lines
• Define Lines of Code for each language. Lines of code • Blanks

from different languages are not equivalent. • Comments
• You may want to calculate an effective or equivalent • Executables

SLOC count based on source. New and modified lines • Data Declarations
would count at 100% while reused code would count at
a lower percentage (to address the required effort to Typical Collection Level
integrate and test the reused code). • Unit or equivalent

• Sometimes difficult to generate accurate estimates
early in the program, especially for new types of Typical Reporting Level
programs. Easy to count actuals once code is • CSCI or equivalent
developed using automated tools. • Build/Release

• Estimates should be updated on a regular basis.
• Can be difficult estimating and tracking lines of code by Count Actuals Based On

source (new, modified, retained, deleted, NDI, GOTS, or • Release to configuration
COTS). management

• Actuals can easily be counted using automated tools. • Passing unit test
• Passing inspection

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

This Measure Answers Questions Such As
• How accurate was the size estimate that the schedule and effort plans were based on?
• How much has the software size changed? In which components have changes occurred?
• Has the size allocated to each incremental build changed? Is functionality slipping to later builds?

Part 2 - Selecting and Specifying Program Measures

Page 142

Measure - Number of Components
Measurement Category - Product Size and Stability
Issue - Growth and Stability

The Number of Components measure counts the number of elementary software components in a software
product, and the number that are added, modified, or deleted. The total number of components defines the size
of the software product. Changes in the number of estimated and actual components indicates risk due to
product size volatility and additional work which may be required. Reporting the number of design components
provides product size information earlier than other size measures, such as Lines of Code or Function Points.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all application domains, generally with • Component Name

different component definitions. • Source (new, modified, deleted,
• Applicable to all size and type programs. reused, NDI, GOTS, or COTS)
• Useful during development and software support • Language

phases. • Delivery Status (deliverable, non-
deliverable)

Process Integration • Category (operational, support)
• Requires a well defined and consistent component • Build/Release

allocation structure (i.e. Unit to CSCI to Build). • Number of Components
• Required data is generally easy to obtain from software • Number of Components Added

design tools, configuration management tools, or • Number of Components Deleted
documentation. • Number of Components Modified

• Deleted and added components are relatively easy to
collect - modified components are often not tracked. Typical Collection Level

• Volatility in the planned number of components may • Unit or equivalent
represent instability in the requirements in the design
of the software. Typical Reporting Level

• CSCI or equivalent
Usually Applied During • Build/Release
• Requirements Analysis (Estimates)
• Design (Estimates and Actuals) Count Actuals Based On
• Implementation (Estimates and Actuals) • Release to configuration
• Integration and Test (Actuals) management

• Passing unit test
• Passing inspection

This Measure Answers Questions Such As
• How many components need to be implemented and tested?
• How much has the approved software baseline changed?
• Have the components allocated to each incremental build changed? Is functionality slipping to later

builds?

Part 2 - Selecting and Specifying Program Measures

Page 143

Measure - Words of Memory
Measurement Category - Product Size and Stability
Issue - Growth and Stability

The Words of Memory measure counts the number of words used in main memory, in relation to total memory
capacity. This measure provides a basis to estimate if sufficient memory will be available to execute the software
in the expected operational scenarios.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Most commonly used for weapons systems. • Processor Name
• Used on any program with severe memory constraints • Number of Words of Memory

such as avionics or on-board flight software. • Number of Words of Memory Used
• For many programs the amount of memory reserved

is part of the defined exit criteria. Typical Collection Level
• Useful during development and software support • Processor

phases.
Typical Reporting Level

Process Integration • Processor
• Requires an automated tool that measures usage based

on a defined operational profile. This is often difficult to Count Actuals Based On
collect. • Completion of integration

• Estimation may be based on modeling or by assuming • During Test Readiness Review (TRR)
a translation factor between lines of code and words of • Prior to delivery
memory.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates)
• Implementation (Estimates)
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• How much spare memory capacity is there?
• Does the memory need to be upgraded?

Part 2 - Selecting and Specifying Program Measures

Page 144

Measure - Database Size
Measurement Category - Product Size and Stability
Issue - Growth and Stability

The Database Size measure counts the number of words, records, or tables (elements) in each database. The
measure indicates how much data must be handled by the system.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. Often used for AIS • Database Name

programs. • Number of Tables, Words, or Bytes
• Used for any program with a significant database. • Number of Records or Entries

Especially important for those with performance
constraints. Typical Collection Level

• Useful during development and software support • Database
phases.

Typical Reporting Level
Process Integration • Database
• In order to estimate the size of a database, you must

develop an operational profile. This is generally a Count Actuals Based On
manual process which can be difficult. Actuals are • Schema design released to
relatively easy to collect. configuration management

• Schema implementation released
Usually Applied During to configuration management
• Requirements Analysis (Estimates)
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

This Measure Answers Questions Such As
• How much data has to be handled by the system?
• How many different data types have to be addressed?

Part 2 - Selecting and Specifying Program Measures

Page 145

Measurement Category - Functional Size and Stability
Issue - Growth and Stability

Functional Size and Stability measures quantify the functionality of a software product. Functional size
may be used to estimate development schedule and cost. These measures also provide information about the
amount and frequency of change to software functionality which is especially critical late in the
development. Functional changes generally correlate to effort, cost, schedule, and product size changes.

Program Application
• Measurement category applicable to most programs.
• Applicable to all software process models.
• Useful during program planning, development, and software support phases.

Measures Included in this Category
• Requirements
• Function Points

Limitations
• Data collection requires a defined method or tool and is often labor intensive.
• Since data is usually collected manually, variations can be expected from different measurement sources.

Related Measurement Categories
• Target Computer Resource Utilization
• Complexity
• Product Size and Stability
• Work Unit Progress

Example Indicator
• Requirements Stability (PSM Part 3, Section 3.10)

Part 2 - Selecting and Specifying Program Measures

Page 146

Measure - Requirements
Measurement Category - Functional Size and Stability
Issue - Growth and Stability

The Requirements measure counts the number of requirements in the software and interface specifications, and
the number of these requirements that are added, modified, or deleted. The measure provides information on the
total number of requirements, and the development risk due to volatility in requirements or functional growth.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Component Name

• Build/Release
• Applicable to any program that tracks requirements. • Number of Requirements

Useful for any size and type of program. • Number of Requirements Added
• Useful during program planning, development, and • Number of Requirements Deleted

software support phases. • Number of Requirements Modified
• Effective for both non-developed (COTS/GOTS/Reuse • Source of Change (developer

and newly developed software. program manager)

Process Integration Typical Collection Level
• Requires a good requirements traceability process. If • Requirement

an automated design tool is used, the data is more • Component
readily available.

• Count changes against a baseline which is under formal Typical Reporting Level
configuration control. Both stated and derived • Build/Release
requirements may be included.

• To evaluate stability, a good definition of the impacts of Count Actuals Based On
each change is required. • Passing requirements inspection

• It is sometimes difficult to specifically define a • Release to configuration
“requirement”. A consistently applied definition makes management
this measure more effective.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

This Measure Answers Questions Such As
• Have the requirements allocated to each incremental build changed? Are requirements being deferred to
later builds?
• How much has software functionality changed? Which components have been affected the most?

Part 2 - Selecting and Specifying Program Measures

Page 147

Measure - Function Points
Measurement Category - Functional Size and Stability
Issue - Growth and Stability

The Function Points measure provides a weighted count of the number of external inputs and outputs,
logical internal files and interfaces, and inquiries. This measure determines the functional size of software to
support an early estimate of the required level of effort. It can also be used to support productivity assessments

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. Commonly used in AIS • Component Name

applications. • Source (new, modified, deleted,
• Not usually tracked for COTS or reused software. reused, NDI, GOTS, or COTS)
• Useful during development and software support • Build/Release

phases. • Number of Function Points

Process Integration Typical Collection Level
• Requires a design process compatible with function points. • CSCI or equivalent
• Should be based on a defined method such as the

IFPUG function point counting practices manual . Typical Reporting Level
• Usually requires formal training. • CSCI or equivalent
• Requires a well defined set of work products to describe • Build/Release

the requirements and design.
• Very labor intensive to estimate - automated tools are Count Actuals Based On

scarce and have not been validated. • Completion of design documentation
• Release to configuration

Usually Applied During management
• Requirements Analysis (Estimates) • Passing design documentation
• Design (Estimates and Actuals) inspections
• Implementation (Actuals)
• Integration and Test (Actuals)

This Measure Answers Questions Such As
• How big is the software product?
• How much work is there to be done?
• How much functionality is in the software?

Part 2 - Selecting and Specifying Program Measures

Page 148

Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

Target Computer Resource Utilization measures are used to assess the adequacy of the target hardware. High
computer resource utilization can have serious impacts on software performance, cost, schedule, and
supportability. High utilization may require hardware changes or software redesign. During development, reserve
capacity is often defined to allow for future growth due to changes or additional requirements

Program Application
• Measurement category applicable to programs with target hardware resource constraints.
• Applicable to all software process models.
• Useful during development and software support phases.

Measures Included in this Category
• CPU Utilization
• CPU Throughput
• I/O Utilization
• I/O Throughput
• Memory Utilization
• Storage Utilization
• Response Time

Limitations
• These measures are often difficult to define, estimate, and collect. Some computer systems do

provide automated status reporting of some of the measures in this category.

Related Measurement Categories
• Product Size and Stability
• Complexity
• Rework

Example Indicator
• Response Time (PSM Part 3, Section 3.11)

Part 2 - Selecting and Specifying Program Measures

Page 149

Measure - CPU Utilization
Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

The CPU Utilization measure counts the estimated or actual proportion of time the CPU is busy during a
measured time period. This measure indicates whether sufficient CPU resources will be available to support
operational processing. This measure is also used to evaluate whether CPU reserve capacity will be sufficient for
high-usage operations or for added functionality.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. Primarily used for weapon • CPU Name

systems. • Operational Profile
• Useful for any program with a dedicated processor and • Time CPU is Busy

critical performance requirements. Not generally used • Measured Time Period
on programs running on shared processors. • Specified CPU Utilization Limit

• Useful during development and software support
phases. Typical Collection Level

• CPU
Process Integration
• Requires a tool that measures usage based Typical Reporting Level

on a defined operational profile during a measured • CPU
period of time. • Target HWCI

• The operational profile (load levels) has a significant
impact on this measure. Tests should include both Count Actuals Based On
normal and stress levels of operation. • Integrated system test

• Estimates are very difficult to derive and require • Stress/endurance test
significant simulation or modeling support. Estimates
must be developed early to impact design decisions.

• Actual processor utilization is often provided as an
overhead function of an operating system and is more
easily obtained.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

This Measure Answers Questions Such As
• Have sufficient CPU resources been provided?
• Do CPU estimates appear reasonable? Have large increases occurred?
• Can the CPU resources support additional functionality?

Part 2 - Selecting and Specifying Program Measures

Page 150

Measure - CPU Throughput
Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

The CPU Throughput measure provides an estimate or actual count of the number of processing tasks that can
be completed in a specified period of time. This measure provides an indication of whether or not the software
can support the system’s operational processing requirements.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. Primarily used for weapon • CPU Name

systems. • Operational Profile
• Useful for any program with a dedicated processor and • Number of Requests for Service

critical timing requirements. Not generally used on • Number of Requests for Service
programs running on shared processors. Completed

• Useful during development and software support • Measured Time Period
phases. • Specified CPU Throughput Limit

Process Integration Typical Collection Level
• Actuals can be based on real-time observation or may • CPU

require a tool that measures task completion based on
a defined operational profile. This data is generally Typical Reporting Level
easier to collect. • CPU

• The operational profile has a significant impact on this • Target HWCI
measure. Tests should include both normal and stress
levels of operation. Count Actuals Based On

• Estimates are very difficult to derive and require • Integrated system test
significant simulation or modeling support. Estimates • Stress/endurance test
must be developed early to impact design decisions.

• The measurement methodology for CPU throughput
is critical for meaningful results. I n many cases
the measure is based on average CPU throughput.
The averaging period used is therefore important.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

This Measure Answers Questions Such As
• Have sufficient CPU resources been acquired?
• Do CPU estimates appear reasonable? Have large increases occurred?

Part 2 - Selecting and Specifying Program Measures

Page 151

Measure - I/O Utilization
Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

The I/O Utilization measure calculates the proportion of time the I/O resources are busy during a measured time
period. This measure indicates whether I/O resources are sufficient to support operational processing
requirements.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. Primarily used for weapon • I/O Channel Name

systems. • Operational Profile
• Critical for high traffic systems. • Time I/O Resource is Busy
• Network I/O may also be measured under this measure. • Time I/O Resource is Available
• Useful during development and software support • Measured Time Period

phases. • Specified I/O Channel Utilization Limit

Process Integration Typical Collection Level
• Actual measurement requires a tool that • I/O Resource

measures usage based on a defined operational profile
during a measured period of time. Actuals are relatively Typical Reporting Level
easy to collect. • I/O Resource

• The operational profile has a significant impact on this • Target HWCI
measure. Tests should include both normal and stress
levels of operation. Count Actuals Based On

• Estimates are very difficult to derive and require • Integrated system test
significant simulation or modeling support. Estimates • Stress/endurance test
must be developed early to impact design decisions.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

This Measure Answers Questions Such As
• Do the I/O resources allow adequate data traffic flow?
• Can additional data traffic be provided after system delivery?
• Should I/O resources be expanded?

Part 2 - Selecting and Specifying Program Measures

Page 152

Measure - I/O Throughput
Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

The I/O Throughput measure reports the rate at which the I/O resources send and receive data, according to the
number of data packets (bytes, words, etc.) successfully sent or received during a measured time period. This
measure indicates whether the I/O resources are sufficient to support the system’s operational processing
requirements.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. Primarily used for weapon • I/O Resource Name

systems. • Operational Profile
• Critical for high traffic systems. • Number of Data Packets
• Network I/O may also be measured using this measure. • Number of Data Packets Successfully
• Useful during development and software support Sent

phases. • Number of Data Packets Successfully
Received

Process Integration • Measured Time Period
• Actual measurement requires a of tool that • Specified I/O Throughput Limit

measures usage based on a defined operational profile
during a measured period of time. This is relatively Typical Collection Level
easy to collect. • I/O Resource

• The operational profile has a significant impact on this
measure. Tests should include both normal and stress Typical Reporting Level
levels of operation. • I/O Resource

• Estimates are very difficult to derive and require • Target HWCI
significant simulation or modeling support. Estimates
must be developed early to impact design decisions. Count Actuals Based On

• The measurement methodology for I/O throughput is • Integrated system test
critical for meaningful results. In many cases the • Stress/endurance test
measure is based on average I/O throughput. The
averaging period used is therefore important.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

This Measure Answers Questions Such As
• Can the software design handle the required amount of system data in the allocated time?
• Can the software handle additional system data after delivery?

Part 2 - Selecting and Specifying Program Measures

Page 153

Measure - Memory Utilization
Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

The Memory Utilization measure indicates the proportion of memory which is used during a measured time
period. This measure addresses random access memory (RAM), read only memory (ROM), or any other form of
electronic, volatile memory. This measure specifically excludes all types of magnetic and optical media (e.g.
disk, tape, CD-ROM, etc.). This measure provides an indication of whether the memory resources can support
the system’s operational processing requirements.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. Primarily used for weapon • Memory Name

systems. • Operational Profile
• Critical for memory constrained systems. • Memory Available
• Useful during development and software support • Memory Used

phases. • Measured Time Period
• Specified Memory Utilization Limit

Process Integration
• Measure and monitor different types of memory (e.g. Typical Collection Level

RAM, ROM) separately. Specify the size of a word • CPU
(e.g. 16 bit, 32 bit, etc.) for each memory type.

• Actual measurement requires a tool that Typical Reporting Level
measures usage based on a defined operational profile • CPU
during a measured time period or task. This is relatively • Target HWCI
easy to collect.

• The operational profile has a significant impact on this Count Actuals Based On
measure. Tests should include both normal • Integrated system test
and stress levels of operation. • Stress/endurance test

• Estimates are very difficult to derive and require
significant simulation or modeling support. Estimates
must be developed early to impact design decisions.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

This Measure Answers Questions Such As
• Will the software fit in the processors?
• Can the software size increase after system delivery as needed to incorporate new functionality?
• What is the risk that system errors will be caused by lack of storage space?

Part 2 - Selecting and Specifying Program Measures

Page 154

Measure - Storage Utilization
Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

The Storage Utilization measure reports the proportion of storage capacity used. The measure provides an
indication of whether storage resources are sufficient to store programs and/or the anticipated volume of
operational data generated by the system. The term "storage" refers to magnetic and optical media (e.g. disk,
tapes, hard drives, CD-ROM, etc.), but specifically excludes all types of random access memory
(RAM), read only memory (ROM), or any other forms of electronic memory.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. Primarily used for weapon • Storage Name

systems. • Storage Available
• Critical for storage constrained systems. • Storage Used
• Useful during development and software support • Specified Storage Utilization Limit

phases.
Typical Collection Level

Process Integration • Storage Device
• Measure and monitor different types of storage (e.g.

disk, tape) separately. Specify the size of a word (e.g. Typical Reporting Level
16 bits, 32 bits, etc.) for each storage type. • Storage Device

• Actuals are easy to measure. Estimates are often • Target HWCI
based on product size.

Count Actuals Based On
Usually Applied During • Integrated system test
• Design (Estimates) • Stress/endurance test
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

This Measure Answers Questions Such As
• Have sufficient storage resources been provided?
• Do storage estimates appear adequate?
• What is the expansion capacity?

Part 2 - Selecting and Specifying Program Measures

Page 155

Measure - Response Time
Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

The Response Time Measure reports the amount of time required to process a request. The measure counts the
time between initiation of a request for service and the conclusion of that service. It provides an indication of whether
the target computer system responds in a timely manner.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. Used extensively on AIS • HWCI Name

systems. • Operational Profile
• Critical for programs with specified response time • Service Name

requirements. Especially critical for real-time programs. • Service Initiation Time
• Useful during development and software support • Service Completion Time

phases. • Maximum Allowable Service Time

Process Integration Typical Collection Level
• Actuals can be based on real-time observation or may • Service

require a tool that measures request completion based
on a defined operational profile. This data is generally Typical Reporting Level
easier to collect. • Service

• The operational profile has a significant impact on this
measure. Tests should include both normal and Count Actuals Based On
stress levels of operation. • Integrated system test

• This measure must be collected at a low level in order • Stress/endurance test
to provide a good characterization of the level of service
provided.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

This Measure Answers Questions Such As
• Is the target computer system sufficient to meet response requirements?
• How long do certain services take?
• Does the software operate efficiently?

Part 2 - Selecting and Specifying Program Measures

Page 156

Measurement Category - Defect Profile
Issue - Product Quality

Defect Profile measures identify the number of problem reports, defects, and failures in the software
products and/or processes. Defect Profile measures are some of the best measures for monitoring
integration and test progress. These measures also provide an indication of product quality.

Program Application
• Basic measurement category applicable to most programs.
• Applicable to all software process models.
• Useful during development and software support phases.

Measures Included in this Category
• Problem Report Trends
• Problem Report Aging
• Defect Density
• Failure Interval

Limitations
• Measures in this category do not always address the effort which is required to implement the

changes. It is possible to have one change that has a major impact on all facets of the program, or
multiple changes with minimal impact.

Related Measurement Categories
• Work Unit Progress
• Rework
• Product Size and Stability

Additional Information
• A defect is a product's non-conformance with its specification. A problem report is a documented

description of a defect, unusual occurrence, observation, or failure that requ ires investigation and may
involve software modifications. Not all problem reports identify valid software problems. A valid
software problem may be associated with multiple defects.

• While commonly tracked during testing, defect profile measures are extremely useful when they are
applied during software requirements analysis and design.

Example Indicator
• Problem Report Status (PSM Part 3, Section 3.12)
• Problem Report Aging (PSM Part 3, Section 3.13)
• Defect Density (PSM Part 3, Section 3.14)

Part 2 - Selecting and Specifying Program Measures

Page 157

Measure - Problem Report Trends
Measurement Category - Defect Profile
Issue - Product Quality

The Problem Report (PR) Trends measure quantifies the number, status, and priority of problems
reported. It provides very useful information on the ability of a developer to find and fix defects. The
quantity of PRs reported reflects the amount of development rework (quality). Arrival rates can indicate
product maturity (a decrease should occur as testing is completed). Closure rates are an indication of
progress and can be used to predict test completion.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Basic measure applicable to all domains. • Component Name
• Included in most DoD measurement policies and • Priority

commercial measurement practices. • Status Code
• Applicable to all sizes and types of programs. • Number of Problem Reports
• Useful during development and software support • Build/Release

phases. • Discovery Activity

Typical Collection Level
Process Integration • CSCI or equivalent
• Requires a disciplined problem reporting process.
• This measure is generally available during integration Typical Reporting Level

and test. It is beneficial, however, to begin problem • CSCI or equivalent
tracking earlier. Potential areas for tracking include • Build/Release
requirements, design, code, and unit test inspections,
unit tests, CSCI and build level integration and testing, Count Actuals Based On
and system level testing. • Successfully tested

• The status codes used on a program should address at • Successfully integrated
a minimum which problem reports are open and closed. • Delivery to field

• Easy to collect actuals when an automated problem • Problem report documented
reporting system is used. Many programs do not • Problem report approved by
estimate the number of problem reports expected. configuration control board

• The number of discovered problem reports should be
considered relative to the amount of discovery activity
(number of inspections, amount of testing, etc.)

• Many programs use the number of open problem
reports, by priority categories, as a measure of
readiness for test/delivery.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• How many (critical) problem reports have been written?
• Do defect arrival and closure rates support the scheduled completion date of integration and test?

Part 2 - Selecting and Specifying Program Measures

Page 158

Measure - Problem Report Aging
Measurement Category - Defect Profile
Issue - Product Quality

The Problem Report Aging measure reports the length of time that each problem report (PR) has remained open.
The measure is used to determine whether progress is being made in fixing problems. It helps assess whether or
not software rework is being deferred.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Problem Report Name
• Applicable to all sizes and types of programs. • Component Name
• Useful during development and software support • Priority

phases. • Status Code
• Discovery Date

Process Integration • Closure Date
• Requires a disciplined problem reporting process. • Build/Release
• Easy to collect actuals when an automated problem

reporting system is used. Most programs do not Typical Collection Level
estimate problem report aging. • Problem Report

Usually Applied During Typical Reporting Level
• Requirements Analysis (Actuals) • CSCI or equivalent
• Design (Actuals) • Build/Release
• Implementation (Actuals)
• Integration and Test (Actuals) Count Actuals Based On

• Successfully tested
• Successfully integrated
• Delivery to field
• Problem report documented
• Problem report approved by

configuration control board

This Measure Answers Questions Such As
• How long does it take to close a PR?
• Is the developer closing known problems in a timely manner? (How long have open PRs remained

open?)
• Are the problems which are more difficult to fix being deferred?

Part 2 - Selecting and Specifying Program Measures

Page 159

Measure - Defect Density
Measurement Category - Defect Profile
Issue - Product Quality

The Defect Density measure is a ratio of the number of defects written against a component relative to the size of
that component. Either a product or function oriented size measure can be used. The measure helps identify
components with the highest concentration of defects. These components often become candidates for
additional reviews or testing, or may need to be re-written. Trends in the overall quality of a system can also be
monitored with this measure.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Component Name
• Applicable to all sizes and types of programs. • Number of Defects
• Useful during development and software support • Priority

phases. • Number of Lines of Code
• Source (new, modified, deleted,

Process Integration reused, NDI, GOTS, or COTS)
• Requires a disciplined problem reporting process and a • Language

method for measuring software size. • Build/Release
• Requires the allocation of defect and size data to the

associated component affected. Size May be Measured As
• In order to use functional measures of size, • Lines of Code

requirements or function points must be allocated to the • Components
associated components. • Requirements

• Actuals are relatively easy to collect. Most programs • Function Points
do not estimate defect density.

Typical Collection Level
Usually Applied During • CSCI or equivalent
• Requirements Analysis (Actuals)
• Design (Actuals) Typical Reporting Level
• Implementation (Actuals) • CSCI or equivalent
• Integration and Test (Actuals) • Build/Release

Count Actuals Based On
• Defects documented
• Successfully integrated
• Successfully tested
• Delivery to field

This Measure Answers Questions Such As
• What is the quality of the software?
• Which components have a disproportionate amount defects?
• Which components require additional testing or review?
• Which components are candidates for rework?

Part 2 - Selecting and Specifying Program Measures

Page 160

Measure - Failure Interval
Measurement Category - Defect Profile
Issue - Product Quality

The Failure Interval measure specifies the time between each report of a software failure. The measure is used
as an indicator of the length of time that a program can be expected to run without a software failure (during
production systems operation). The measure provides insight into how the software affects overall system
reliability. This measure can be used as an input to reliability prediction models.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Failure Identifier
• Applicable to any program with reliability requirements. • Date/Time Stamp
• Useful during development in system or operational test. • Operational Hours to Failure

Used throughout software support based on reported • Priority
operational failures.

Typical Collection Level
Process Integration • Build/Release
• Requires a disciplined failure tracking process. Easier

to collect if an automated system is used. Data Typical Reporting Level
can be gathered from test logs or incident reports. • Build/Release

• Consider what priority of failures to include.
• Be sure to exclude non-software failures. Count Actuals Based On
• Some programs specify threshold limits for software • Failure documented

reliability. • Failure Validated

Usually Applied During
• Integration and Test (Actuals)

This Measure Answers Questions Such As
• What is the program's expected operational reliability?
• How often will software failures occur during operation of the system?

Part 2 - Selecting and Specifying Program Measures

Page 161

Measurement Category - Complexity
Issue - Product Quality

Complexity measures quantify the structure of software components, based on the number and intricacy of
interfaces and branches, the degree of nesting, the types of data structures, and other characteristics. Complex
components are generally harder to test, are more difficult to maintain, and sometimes contain more defects than
less complex components. Complexity measures provide indications of the need to redesign and the relative
amount of testing required for any component.

Program Application
• Measurement category applicable to programs with long-term software support requirements.
• Applicable to most software process models.
• Useful during development and software support phases.

Measures Included in this Category
• Cyclomatic Complexity

Limitations
• Data is not generally available until after a component has been coded (although some CASE tools

measure design complexity). Reducing complexity requires rework to redesign or recode the software.
• The interpretation of complexity is different for various high order languages.
• Some components must be complex to meet specified functional and performance requirements. The

measures do not account for this.

Related Measurement Categories
• Defect Profile
• Product Size and Stability
• Rework

Example Indicator
• Software Complexity (PSM Part 3, Section 3.15)

Part 2 - Selecting and Specifying Program Measures

Page 162

Measure - Cyclomatic Complexity
Measurement Category - Complexity
Issue - Product Quality

The Cyclomatic Complexity measure counts the number of unique logical paths contained in a software
component. This measure helps assess both code quality and the amount of testing required. A high complexity
rating is often indicative of a high defect rate. Programs with high complexity may require additional reviews,
testing, or may need to be re-written.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Component Name
• Applicable to programs with testability, reliability, or • Cyclomatic Complexity Rating

maintainability concerns. • Build/Release
• Not generally used for COTS or reused code. Not

generally used on software from automatic code Typical Collection Level
generators or visual programming environm ents. • Unit or equivalent

• Useful during development and software support
phases. Typical Reporting Level

• CSCI or equivalent
Process Integration • Build/Release
• Cyclomatic complexity does not differentiate between

types of control flow. A CASE statement counts as high Count Actuals Based On
complexity even though it is easier to use and • Release to configuration
understand than a series of conditional statements. management

• Cyclomatic complexity does not address data structures. • Passing unit test
• Operational requirements may require efficient, highly • Passing inspection

complex code.
• Relatively easy to collect actuals when automated tools

are available (e.g. for Ada, C, C++). Estimates are
generally not derived, but a desired threshold may be
specified.

Usually Applied During
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

This Measure Answers Questions Such As
• How many complex components exist in this program?
• Which components are t he most complex?
• Which components should be subjected to additional testing?

Part 2 - Selecting and Specifying Program Measures

Page 163

Measurement Category - Process Maturity
Issue - Development Performance

Process Maturity measures address the capability of the software development processes within an
organization. The measures may be used to predict the ability of an organization to best address the issues and
constraints of a development program. These measures may also be used internally as part of a process
improvement function.

Program Application
• Measurement category applicable to most programs.
• Applicable to all software process models.
• Useful during program planning.

Measures Included in this Category
• SEI Capability Maturity Model Level

Limitations
• These measures may be obtained through a formal assessment for certification or through an informal

self-evaluation. Only the results of a formal certification should be are accepted for source selection. A
formal certification requires an investment to achieve required capabilities and to complete the certification
process. A strong management commitment is essential.

• Process capability is often determined at an organization level. That capability may not be carried to
the department or project levels, especially when there are significant program cost and schedule
constraints.

• Process capability may help to select an adequate developer, but actual performance may vary
considerably among developers at the same maturity level.

• A high level of software process maturity does not guarantee program success.
• There is subjectivity in the determination of process maturity.

Related Measurement Categories
• Environment Availability
• Productivity
• Rework

Example Indicator
• Software Process Maturity (PSM Part 3, Section 3.16)

Part 2 - Selecting and Specifying Program Measures

Page 164

Measure - Capability Maturity Model Level
Measurement Category - Process Maturity
Issue - Development Performance

The Capability Maturity Model (CMM) Level measure reports the rating (1-5) of a software development
organization’s software development process, as defined by the Software Engineering Institute. The
measure is the result of a formal assessment of the organization’s project management and software
engineering capabilities. It is often used during the source selection process to evaluate competing
developers.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Organization Name
• Normally applied at the organizational level. • CMM Rating
• Useful during program planning, development and

software support phases. Typical Collection Level
• Program

Process Integration
• Requires formal training and a very structured Typical Reporting Level

assessment approach. Requires a significant amount • Organization
of time and effort.

• Assessment may be formally conducted by an external Count Actuals Based On
assessor, or a self-evaluation can be performed. • Prior to contract award

• Rating may be used during source selection to help select a • Annual performance evaluation
developer. Assessment may be used as part of a
process improvement program.

Usually Applied During
• Not applicable.

This Measure Answers Questions Such As
• Does a developer meet minimum development capability requirements?
• What is the developer's current software development capability?
• What project management and software engineering practices can be improved?

Part 2 - Selecting and Specifying Program Measures

Page 165

Measurement Category - Productivity
Issue - Development Performance

Productivity measures identify the amount of software product produced per unit of effort. Productivity
measures are widely used as an indication of whether or not a program has adequate funding and schedule
relative to the amount of software to be developed. Assessments of actual productivity provide an indication of
whether the developer is producing code at a sufficient rate.

Program Application
• Measurement category applicable to most programs.
• Applicable to all software process models.
• Useful during program planning, development, and software supp ort phases.
• While not explicitly included in most DoD measurement polices and commercial measurement

practices, the data necessary to calculate these measures are generally included.

Measures Included in this Category
• Product Size/Effort Ratio
• Functional Size/Effort Ratio

Limitations
• Productivity measures cannot be compared to each other, unless the same definitions are used for the

amount of product or function (in the same language) and effort (same labor categories included). This is
probably the most misused measure .

• Measures in this category may not address software quality, complexity, or difficulty.
• Actual software productivity for different programs developed by the same organization can vary

considerably. A high productivity on one program does not guarantee a high productivity for others.
Related Measurement Categories
• Product Size and Stability
• Functional Size and Stability
• Effort
• Milestone Performance

Example Indicator
• Software Productivity (PSM Part 3, Section 3.17)

Part 2 - Selecting and Specifying Program Measures

Page 166

Measure - Product Size/Effort Ratio
Measurement Category - Productivity
Issue - Development Performance

The Product Size/Effort Ratio measure specifies the amount of software product produced relative to the amount
of effort expended. This common measure of productivity is used as a basic input to project planning and also
helps evaluate whether performance levels are sufficient to meet cost/schedule estimates.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. Commonly used in Weapons • Organization Name

systems. • Build/Release
• Used for programs of all size. Less important for • Product Size (from Product Size and

programs where little code is generated such as those Stability measure)
using automatic code generation and visual • Language
programming environments. • Effort

• Not generally used for COTS or reused software.
• Estimates are often used during program planning. Typical Collection Level

Both estimates and actuals are used during • Build/Release
development and software support that focuses on • Program
incorporation of new functionality. Not generally used • Organization
for maintenance programs focused on problem
resolution. Typical Reporting Level

• Build/Release
Process Integration • Program
• In order to compare productivities from different • Organization

programs, the same definitions for size and effort must
be used. For size, the same measure (e.g. Lines of Count Actuals Based On
Code) must be used as well as the same definition (e.g. • Completion of Build/Release
logical lines). For the effort measure, the same labor • Components Implemented
categories and software activities must be included. • Components Integrated and Tested

• The environment, language, tools, and personnel
experience will affect productivity achieved.

• Productivity can also be calculated using software
cost models. Many of these models include schedules as
part of the productivity equation.

• To validly calculate productivity, the effort measure must
correlate directly with the size measure. If, for example,
effort for a component is covered but the component ’s size
is not, productivity will be lower.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• Is the developer producing the product at a sufficient rate to meet the com pletion date?
• How efficient is the developer at producing the software product?
• Is the planned/required software productivity rate realistic?

Part 2 - Selecting and Specifying Program Measures

Page 167

Measure - Functional Size/Effort Ratio
Measurement Category - Productivity
Issue - Development Performance

The Functional Size/Effort Ratio measure specifies the amount of functionality provided relative to the amount of
effort expended. This measure is used as a basic input to project planning and also helps evaluate whether
performance levels are sufficient to meet cost/schedule estimates.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. Commonly used in AIS • Organization Name

systems. • Build/Release
• Useful when product size measures are not available. • Functional Size (from Functional Size •

Useful during program planning, development, and and Stability measure)
software support phases • Labor Hours (from Labor Hours

measure)
Process Integration
• In order to compare productivities from different Typical Collection Level

programs, the same definitions for size and effort must • Build/Release
be used. For size, the same measure (e.g. Function • Program
Points) must be used as well as the same counting • Organization
practices. For the effort measure, the same labor
categories and software activities must be included. Typical Reporting Level

• The environment, language, tools, and personnel • Build/Release
experience will affect productivity achieved. • Program

• Productivity can also be calculated using software • Organization
cost models. Many of these models include schedule
as part of the productivity equation. Count Actuals Based On

• To validly calculate productivity, the effort measure • Completion of Build/Release
must correlate directly with the size measure. If, • Functions Implemented
for example, effort for a function is covered but the • Functions Integrated and Tested
functional size is not, productivity will be lower.

• Useful early in the program, before actual product size
data is available.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

This Measure Answers Questions Such As
• Is the developer producing the software at a sufficient rate to meet the completion date?
• How efficient is the developer at producing the software?

Part 2 - Selecting and Specifying Program Measures

Page 168

Measurement Category - Rework
Issue - Development Performance

Rework measures address the amount of rework due to defects in completed work products (documents,
design, code, test plans, testing, etc.). Rework measures are used to evaluate the quality of the software
products and development process. They provide information on how much software must be recoded and how
much effort is required for corrections.

Program Application
• Measurement category applicable to most programs.
• Applicable to most software process models. Not generally used in rapid prototype pr ocesses.
• Useful during development and software support phases.

Measures Included in this Category
• Rework Size
• Rework Effort

Limitations
• Data collection is difficult and often labor intensive.
• Most accounting systems do not include rework effort in separate accounts (in order to track rework

effort at least one cost account needs to be added).
• Requires a consistent process for effort allocation to rework/non-rework categories.

Related Measurement Categories
• Product Size and Stability
• Defect Profile
• Complexity

Example Indicator
• Rework Effort (PSM Part 3, Section 3.18)

Part 2 - Selecting and Specifying Program Measures

Page 169

Measure - Rework Size
Measurement Category - Rework
Issue - Development Performance

The Rework Size measure counts the number of lines of code that must be changed to fix identified defects. This
measure helps in assessing the quality of the initial development effort, by indicating the amount of total
code which must undergo rework.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Component Name
• Applicable to most development processes. In a rapid • Number of Lines of Code Changed

prototype process, it is only applicable to the 'final' Due to Rework
version of the software product.

• Not generally used for non-developed code such as Size May be Measured As
COTS. • Lines of Code

• Useful during development and software support • Components
phases.

Typical Collection Level
Process Integration • Unit or equivalent
• Very difficult to collect. Most configuration

management systems do not collect information on Typical Reporting Level
changes to the size of code or reason for the change • CSCI or equivalent
(rework).

• Rework size should only include code changed to Count Actuals Based On
correct defects. Changes due to enhancements are not • Release to configuration
rework. management

• Rework cost and schedule should be included in • Passing inspection
the development plan • Passing unit test

Usually Applied During
• Implementation (Actuals)
• Integration and Test (Actuals)

This Measure Answers Questions Such As
• How much code had to be changed as a result of correcting defects?
• What was the quality of the initial development effort?
• Is the amount of rework impacting cost and schedule?

Part 2 - Selecting and Specifying Program Measures

Page 170

Measure - Rework Effort
Measurement Category - Rework
Issue - Development Performance

The Rework Effort measure counts the amount of work effort expended to find and fix software defects.
Rework effort may be expended to fix any software product, including those related to requirements analysts,
design, code, etc. This measure helps assess the quality of the initial development effort, and identify products
and software activities requiring the most rework.

Selection Guidance Specification Guidance

Program Application Data Items Typically Collected
• Applicable to all domains. • Organization
• Applicable to most development processes. In a rapid • WBS or Task Element

prototype process, it is only applicable to the 'final' • Labor Hours
version of the software product.

• Not generally used for effort associated with Typical Collection Level
non-developed code such as COTS. • WBS or task element

• Useful during development and software support
phases. Typical Reporting Level

• WBS or task element
Process Integration • Organization
• Difficult to collect. Some cost accounting systems do

not collect information on rework effort. Count Actuals Based On
• For basic tracking, a single WBS/cost account should • End of financial reporting period

be created to track all rework effort (per organization).
For more advanced tracking, multiple WBS/cost
accounts should be created to track rework at the
component and/or activity level.

• Rework effort should only include effort associated with
correcting defects. Effort expended due to incorporation
of enhancements is not rework.

• Rework cost and schedule should be included in the
development plan.

Usually Applied During
• Requirements Analysis (Actuals)
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

This Measure Answers Questions Such As
• How much effort was expended on fixing defects in the software product?
• Which software development activity required the most rework?
• Is the amount of rework impacting cost and schedule?

Part 2 - Selecting and Specifying Program Measures

Page 171

Measurement Category - Technology Impacts
Issue - Technical Adequacy

Technology Impacts measures quantify the positive or negative impacts of new technology used on the program.
They are defined and selected to track the effect of highly leveraged software technologies. They can include
functionality delivered, the amount of code developed, the defect discovery rates, and required replans.
Technology Impact measures provide an indication of the relative effects of developing or maintaining software in
different environments.

Program Application
• Measurement category applicable to many programs.
• Applicable to all software process models.
• Useful during program planning, development, and software suppo rt phases.

Measures Included in this Category
• No pre-defined measures

Limitations
• It is very difficult to attribute problem impacts to one particular software technology. Measures

in this category, however, do provide objective insight.

Related Measurement Categories
• Productivity
• Defect Profile
• Product Size and Stability
• Functional Size and Stability
• Milestone Performance

Example Indicator
• Software Origin (PSM Part 3, Section 3.19)

Part 2 - Selecting and Specifying Program Measures

Page 172

Part 2 - Selecting and Specifying Program Measures

Page 173

CHAPTER 3 – MEASUREMENT SELECTION AND
SPECIFICATION EXAMPLE

Chapters 1 and 2 provide the guidance and detailed information
required to select and specify program measures. This chapter
provides an example program scenario to show how to use this
information to actually select a set of software measures using.
Other examples of measurement selection and specification are
provided in the Case Studies (Part 5).

3.1 PROGRAM SCENARIO

During the program planning phase of a large weapons system
software upgrade, the program office learned that the updated
system would have to be deployed earlier than originally planned.
The planning efforts completed to date clearly indicated that there
were already some significant constraints with respect to schedule,
and this change increased the risk even further. Given that the
program was already getting a considerable amount of external
visibility, the Program Manager decided that he would rely on a
well implemented measurement process to provide him with the
software information that he felt he would need to properly manage
the program issues.

The program was required to follow many of the DoD acquisition
reform requirements, and as such, a number of new technical and
management approaches were going to be implemented. The
Program Manager established several planning related Integrated
Product Teams (IPT), and formally tracked the issues and risks
associated in the program.

The primary risk to the program was the short development
schedule. The program had originally been “sold” on the new
mission capabilities and the use of advanced technologies, which
increased the overall technical risk of the software development,
and now the need to deliver the system earlier than expected was of
increased concern.

The software engineering IPT was involved in tailoring the
measurement process. To start, the key characteristics of the

Part 2 - Selecting and Specifying Program Measures

Page 174

program were identified and documented. This information is
summarized as follows:

• Large real-time weapons system
• Existing system baseline
• Approximately 1.5 Million lines of source to be implemented
• Multiple software languages - Ada, C, and Assembly
• Multiple developers working under a prime contractor responsible

for system integration
• Average software process maturity across all organizations
• Constrained funding limits

Due to the schedule risk and the large amount of functionality that
had to be implemented in a short time, the program office required
that the developer maximize the use Commercial Off the Shelf
(COTS) software components, reuse a considerable amount of
existing legacy software, adopt an open systems architecture, and
apply commercial software process standards.

3.2 MEASUREMENT SELECTION SUMMARY

Following the PSM measurement selection and specification
approach, the program office prioritized the program specific
software issues and allocated them to the appropriate Common
Issues. The measurement analyst then reviewed the PSM
Measurement Tables and determined the key measurement
categories and associated measures that were needed to best
provide the required information. Figure 2-5 summarizes the
results of their selection process, and lists the primary measures that
were selected.

Part 2 - Selecting and Specifying Program Measures

Page 175

Measurement
Issues Categories Measures

Schedule and Progress Milestone Performance Milestone Dates

Work Unit Progress Components Integrated and
Tested

Requirements Allocated
Requirements Tested
Problem Reports Resolved

Incremental Capability Build Content - Function
Resources and Cost Effort Profile Effort Allocation
Growth and Stability Functional Size and

Stability
Requirements

Product Quality Defect Profile Problem Report Trends
Development Performance Productivity Product/Effort Ratio
Technical Adequacy Technology Impacts Code Growth by Source

Figure 3-1 Issues, Measurement Categories, and Selected Measures

The software engineering IPT felt that the importance of the
schedule and progress issue required the implementation of a
number of related measures. Along with Milestone Dates, which
would already be available from the program management process,
they selected a number of measures in the Work Unit Progress
category. These measures would provide incremental completion
information for each software activity. In this way the program
team would be able to track the progress of each key activity to
completion. The Work Unit Progress measures that were selected
were the ones most useful in tracking the development activities
given the large amount of COTS and reused code that would be
implemented. Thus, the focus was on the selection of requirements
oriented measures, and measures which provided progress
information for integration and test rather than for design and
implementation. This approach provided more useful information
given the extent of COTS and reused software to be used.

Since the development plan was based on highly leveraged software
technology, there were issues with respect to the actual impact of

Part 2 - Selecting and Specifying Program Measures

Page 176

the COTS and reused code on the development schedule and
overall development productivity. As such, the team selected the
Product Size/Effort Ratio measure under the Productivity category
to measure and evaluate overall development performance. They
also defined a Technology Impact measure which would show if the
relative amount of developed to non-developed code was changing.
Both of these measures required the use of lines of code for non-
developmental software. The Labor Hours measure was selected to
support the productivity assessment.

Given the constrained time frame and the large amount of
functionality which had to be delivered, the team felt that
requirements growth would be a major issue. Any significant
growth in the requirements could significantly impact cost and
schedule. They therefore selected the Requirements measure under
the category of Functional Size and Stability.

Given the overall planning constraints and the criticality of the new
functions, product quality was of concern. To address this, both
the Problem Report Trends and Problem Report Aging measures
were selected, to be applied to all software, inclusive of the COTS
and reused code.

At the completion of the measurement selection process the IPT had
defined a basic list of measures which directly addressed the issues that
the program faced. After each measure was specified, the overall set of
measurement requirements was conveyed to the developer for
integration into the software process.

Action

Issues

Measures

Indicators

Analysis

Information

P RACTICAL
 S OFTWARE
 M EASUREMENT

ANALYSIS TECHNIQUES

AND EXAMPLES
PART 3

Part 3 - Analysis Techniques and Examples

Page 178

Part 3 - Analysis Techniques and Examples

Page 179

ANALYSIS TECHNIQUES AND EXAMPLES

Part 2 of Practical Software Measurement stresses the importance
of selecting the measures which best address the software issues on
a particular program. This part of PSM explains how to actually
apply measurement: using measurement to gain insight into the
issues that are of greatest concern for the program. Measurement
is only useful when it provides information about the issues which
helps to make program-related software decisions.

Part 1 of Practical Software Measurement describes the overall
measurement process and the various techniques a measurement
analyst should use when generating and analyzing indicators. This
part of the Guide provides more specific guidance on defining
indicators and generating visual representations of indicators
(i.e., graphs). It provides examples of how measurement indicators
can be generated and applied to analyze software issues.

This part of the Guide is organized into four chapters:

• Chapter 1 - Measurement Application Overview,
summarizes the process described in Part 1 for
collecting, analyzing, and reporting measurement data
and information.

• Chapter 2 - Indicator Representation, describes how to
produce graphs and reports which help to visually
represent an issue.

• Chapter 3 - Single Indicator Examples, includes, for
each measurement category described in PSM, an
example of how a measurement indicator can be
defined and analyzed.

• Chapter 4 - Integrated Indicator Examples, includes
examples of how different indicators can be used
together to analyze specific program issues.

The application guidance provided in this part of PSM is based on
actual experience. Many of the examples used are taken directly
from actual DoD programs.

Part 3 - Analysis Techniques and Examples

Page 180

Part 3 - Analysis Techniques and Examples

Page 181

TABLE OF CONTENTS

CHAPTER 1 – MEASUREMENT APPLICATION OVERVIEW................................ 183
1.1 Collect and Process Data...183

1.2 Define And Generate Indicators...184

1.3 Analyze Issues..185

1.4 Report Results..185

1.5 Take Action..186

CHAPTER 2 – INDICATOR REPRESENTATION................................ 187

CHAPTER 3 – SINGLE INDICATOR EXAMPLES................................ 191
3.x Indicator Name..192

3.1 Milestone Progress Indicator..194

3.2 Design Progress Indicator...196

3.3 Schedule Variance Indicator...198

3.4 Incremental Build Content Indicator..200

3.5 Effort Allocation Indicator..202

3.6 Staff Experience Indicator..204

3.7 Cost Profile Indicator..207

3.8 Resource Utilization Indicator..209

3.9 Software Size Indicator...211

3.10 Requirements Stability Indicator..213

3.11 Response Time Indicator...215

3.12 Problem Report Status Indicator..217

3.13 Problem Report Aging Indicator...218

3.14 Defect Density Indicator..221

3.15 Software Complexity Indicator...223

3.16 Software Process Maturity Indicator..225

3.17 Software Productivity Indicator..227

3.18 Rework Effort Indicator..230

3.19 Software Origin Indicator...233

CHAPTER 4 – INTEGRATED INDICATOR EXAMPLES................................235
4.1 Design Completion Analysis..236

4.2 Test Completion Analysis..238

4.3 Readiness for Delivery Analysis..240

4.4 Maintenance Analysis...242

Part 3 - Analysis Techniques and Examples

Page 182

Part 3 - Analysis Techniques and Examples

Page 183

CHAPTER 1 – MEASUREMENT APPLICATION
OVERVIEW

Utilizing measurement data to analyze program issues is an
iterative, versus a one-time, process. Data is continuously collected
and measurement indicators are defined and generated at regular
intervals throughout a program. Although each issue may require
different data and different indicators, the basic analysis process is
the same. Figure 1-1 describes this process:

Figure 1-1 Measurement Application process

This version of PSM primarily uses examples to illustrate how
indicators are defined and applied to help identify and resolve
program issues. The next version of the Guide (v3.0) will
provide more detailed guidance on how issues can be
systematically analyzed.

1.1 COLLECT AND PROCESS DATA

After the measurement process is tailored for a program, the
specific measures, associated data, and the implementation
requirement should be defined. However, how data is actually

Part 3 - Analysis Techniques and Examples

Page 184

collected is very dependent on the developer’s software process,
project organization, and existing tools. Planning data will most
often be collected from project scheduling tools, spreadsheets, or
forms. Actual data will most often be collected from sources such
as project tracking tools, problem and defect tracking databases,
static and dynamic analysis tools, time reporting systems, and
configuration management systems.

Data may be reported at different levels of detail and at different
frequencies than it was collected. However, data at a reasonably
low-level of aggregation should be supplied to the program
management office in order to allow the required analyses to be
conducted. The program management office should verify the data
before using it to assess program status. Verification involves
looking for missing data items, cross-checking the data for
accuracy, and ensuring data is being provided at the proper level of
detail. Evaluating the accuracy and integrity of the data being
supplied actually reveals a lot about the developer’s process and the
issues that may later impact the program.

1.2 DEFINE AND GENERATE INDICATORS

Measurement indicators are the primary mechanisms used for issue
analysis and reporting. An indicator is a measure or combination of
measures that provides insight into a software issue or concept.
Multiple indicators may often be needed to thoroughly understand
the status of an issue. Many measurement indicators are produced
by using an analysis technique that compares one or more
measured values to corresponding expected values.

Measured values are the actual measurement data collected and
reported by the developer. Examples include hours of effort
expended or lines of code produced. Expected values are planned
or historical measurement data such as planned milestone dates,
target level of reliability or required productivity. An expected
value may also reflect a standard rule of thumb or threshold, such as
the generally recognized rule of thumb which recognizes 10 as the
maximum desired value for a component’s cyclomatic complexity
score. A series of data points is often provided for both measured
and expected values.

Part 3 - Analysis Techniques and Examples

Page 185

An indicator is produced by applying an analysis technique to the
data. The technique usually involves the application of a graphing
technique or a mathematical operation, or both, to the data, which
results in a comparison of the measured and expected values.
Various indicators may need to be defined and generated at various
times throughout a program to effectively analyze an issue. The
combination of measurement data used, the issue being analyzed,
and the insight desired all influence the generation of an indicator.
The name of the indicator should reflect these elements.

1.3 ANALYZE ISSUES

Analyzing a software issue involves using indicators to identify
unexpected situations. Then, information received from the analysis
is coupled with other program information and personal experience.
Insight is achieved by combining information from these three
sources; this insight is then used to assess the impact the situation
may have on desired program outcomes.

Issue analysis also involves using problem solving skills to gain an
understanding of why the situation exists so that the proper
corrective action can be initiated. As information is gathered
regarding an issue, actual findings will often lead to new and
different types of analyses, utilizing new and different indicators.
In this regard, the analysis process must be dynamic so that the
underlying causes of problems can be localized and identified.

Rules of thumb are often used to evaluate whether a variance
between measured and expected values represents a situation
requiring further action. For instance, lessons learned from past
projects in one organization may dictate that whenever a variance in
either schedule or budget is greater than 10 percent, the program
manager should investigate the situation and take corrective action.
Organizations should attempt to define analysis rules of thumb
wherever possible, as this increases the likelihood that the proper
level of analysis will be performed consistently for each program.

1.4 REPORT RESULTS

Once the status of an issue is understood, the findings and
recommendations should be reported to program management.

Part 3 - Analysis Techniques and Examples

Page 186

This is normally done via a briefing or report. The following
information should be communicated:

• Overall status

• Specific situations or problems discovered

• Recommendations

• Identification of potential new issues

Results should be used by the program manager at program status
review meetings, at major milestone reviews, and ideally throughout
the program. Adequate time should be allocated in advance to
collect and process the data, analyze the issues, prepare reports, and
conduct the briefings. Care should be taken to insure that all
information conveyed in the reports can be explained. The
developer should also be briefed on the analysis results.

1.5 TAKE ACTION

Action must be taken to realize any benefit from measurement.
The goal of project measurement is to identify problems and take
corrective action in time to affect the outcome of the project.
Actions may be initiated by either the developer or the program
manager.

Actions, once taken, should be tracked to assess the effectiveness of
the action and to ensure that the action does positively affect
outcomes.

Part 3 - Analysis Techniques and Examples

Page 187

CHAPTER 2 – INDICATOR REPRESENTATION

Measurement indicators can provide valuable insight into a
particular issue. Indicators help to explain both what is happening
and what may happen with respect to the issue area. Simple
charting techniques can be used to produce graphical
representations of the indicators. The ability to extract the pertinent
information contained in the measurement data can be improved
with proper selection and use of these charting techniques. The two
most commonly used charting techniques are described below.

Line Charts, sometimes called run charts, provide a way to
represent a series of measurement data values over time. A
series may contain either measured or expected values; each
value in the series is reported for a specified point in time.
Values are plotted as points on the graph, and the values are
connected with lines to help show progress or a trend. For
example, a line chart may include one series of planned
values which shows the cumulative number of units
scheduled to complete coding and unit testing each month,
over a six month period of time. As units are actually
completed, a second series of values is tallied and added to
the graph each month to allow a comparison between
measured and expected values.

Bar Charts provides a way to represent the count or
frequency of a set of components or events. Bars are
typically drawn vertically with the Y-axis indicating the units
or events being counted. Each bar contains data associated
with a class or grouping of data. Understanding the
distribution of the data across the groups is often useful.
For example, the bar might represent the number of defects
detected: 1) for each product component, or 2) within each
phase of the software development life cycle. Sets of bars
can also be used to compare two series, such as measured
and expected values. Histograms and Pareto charts are two
special types of bar charts.

Part 3 - Analysis Techniques and Examples

Page 188

Good graphic displays of indicators facilitate communication of
measurement results. Therefore, graphs must not be too complex.
Each graph should convey a clear message. It is better to have many
graphs than many messages on one graph, especially when getting
started. Some guidelines for developing effective graphs include
the following:

• Provide a descriptive title identifying the program or
system name, type of data, and component or CSCI (if
applicable) represented by the data.

• Show an as-of line or date indicating the reporting
period represented by this data. Many graphs will show
plans or projections beyond the as-of date.

• Axis labels should include type of units and scale
markers (e.g., dates or counts).

• Provide indicators of major milestones that
correspond to the interval plotted when showing time
trends.

• Use the connect-the-dots technique rather than curve-
fitting to show trends.

• Use contrasting styles for lines, bars, and data points
that represent different groups of data.

• Label line, bar, and data points directly on the figure,
if possible. Otherwise, use a key that associates a label
with each contrasting style of line, bar, or data point.

• Identify the source of the data. Include the version
number of documents.

• Use similar conventions for all reports. For example,
always use solid boxes for actuals and open boxes for
plans.

• Adjust the horizontal axis to show the expected range
of the data plotted.

• Label significant events and trends in the data.
• Be careful that the use of percentages does not hide

significant trends in the data.
• Use the same axes on both graphs when comparing two

graphs.

Figure 3-2 shows a graph that illustrates the guidelines listed above.

Part 3 - Analysis Techniques and Examples

Page 189

Figure 3-2. Size Requirements

Part 3 - Analysis Techniques and Examples

Page 190

Part 3 - Analysis Techniques and Examples

Page 191

CHAPTER 3 – SINGLE INDICATOR EXAMPLES

This chapter contains examples of single indicators used to analyze
the issues covered in this document. These are examples only and
do not represent a definitive set that should be applied to all
programs. At least one sample indicator has been included for each
PSM measurement category. Examples are presented using a two-
page format, which contains general descriptions, a visual
representation of the indicator produced from detailed measurement
data, and brief explanations of how the indicator was generated and
how the corresponding issue might be analyzed. Many of the
examples include more than one graph. The first two pages
describe the standard two-page format used throughout the
remainder of the chapter .

The following indicators are included:

Issue Indicator Identifier
Schedule and Progress Milestone Performance 3.1

Design Progress 3.2

Schedule Variance 3.3

Components Delivered 3.4

Resources and Cost Effort Allocation 3.5

(Staff) Domain Experience 3.6

Cost Profile 3.7

Test Lab (Resource) Utilization 3.8

Growth and Stability Software Size 3.9

Requirements Stability 3.10

Response Time 3.11

Product Quality Problem Report Status 3.12

Problem Report Aging 3.13

Defect Density 3.14

Code Complexity 3.15

Performance Process Maturity 3.16

Development Productivity 3.17

Rework Effort 3.18

Technical Adequacy Software Origin 3.19

Part 3 - Analysis Techniques and Examples

Page 192

3.X INDICATOR NAME

Issue Issue Name. The name reflects the measurement data used, the issue
being analyzed, and the insight desired.

Category Category Name.

Selected
Measure

Name of the measure selected for use in this example.

Description A description of the selected indicator, including its purpose and the
questions it can help answer.

Example
Graph

A description of the sample graph(s) on the opposite page, including
how it was produced. Note: Some examples contain an analysis of the
indicator at more than one level of detail and therefore contain more
than one graph.

Feasibility
Analysis

Instructions for evaluating the feasibility of the planned values used in
this example.

Performance
Analysis

A description of how the indicator depicted in the example might be
analyzed to obtain information about the corresponding issue.

Lessons
Learned

Helpful information such as the suggested reporting level, how much
variance is typically considered acceptable, and which factors often
interfere with analysis of this indicator.

Part 3 - Analysis Techniques and Examples

Page 193

Example Graph

Figure 3-xa. Appropriate Graph Caption

Example Graph

Figure 3-xb. Appropriate Graph Caption

Part 3 - Analysis Techniques and Examples

Page 194

3.1 MILESTONE PROGRESS INDICATOR

Issue Schedule and Progress

Category Milestone Performance

Selected
Measure

Milestone Dates

Description Helps identify the current status of major project events, and allows
assessment of the impact of potential or actual schedule slips on future
activities and milestones.

Example
Graph

A Gantt chart was used to present the information. Milestones symbols
were derived from single dates while start and stop dates were used to
produce activity bars for major phase-level activities. An “as of” line was
added to help identify which actuals were included in this chart.

Feasibility
Analysis

Evaluate each activity’s planned start and end dates for reasonableness.
The evaluation should include an assessment of whether all activities are
included, what activities affect the critical path, and the amount of
overlap between various activities.

Performance
Analysis

Figure 3-1 shows a delayed program start resulting in a significant slip in
Build 1 of the software. Based on known dependencies, the slips
projected for Build 2 activities and milestones have been incorporated in
the chart. Further analysis of staffing levels, work unit progress, and
defect rates should help uncover the reasons for any further schedule
slips. The impact of these schedule slips must be evaluated in light of
project priorities and constraints.

Lessons
Learned

Slips in activities and milestones on the critical path are of greatest
concern due to the ripple effect in the later parts of the schedule. Ensure
the graph contains a sufficient level of detail to monitor progress. If
multiple builds or releases are planned, there should be separate activities
and milestones for each build/release.

Part 3 - Analysis Techniques and Examples

Page 195

FIGURE 3-1. SOFTWARE DEVELOPMENT MILESTONE PROGRESS

Part 3 - Analysis Techniques and Examples

Page 196

3.1 DESIGN PROGRESS INDICTOR

Issue Schedule and Progress

Category Work Unit Progress

Selected
Measure

Components Designed

Description Helps identify or predict schedule slips and uncover design size growth,
by comparing the number of units completing design to the number of
units scheduled for design completion over time.

Example
Graph

Overall design progress (Figure 3-2a) was graphed using a line chart
containing cumulative measures for the original plan, the recent replan,
and the actual units designed to date. Each point is calculated by adding
the number of units allocated for the reporting period to their respective
cumulative totals from the last reporting period.

A bar chart (Figure 3-2b) was used to perform a more detailed analysis
of design progress by CSCI. The second bar in each series represents the
number of units that should be completed “as of” the reporting date, and
provides the most meaningful comparison against actual progress.

Feasibility
Analysis

Check to ensure that initial design plans and any replans reflect the total
number of CSUs as documented for the system. Look for a slope that is
unusually steep. Also evaluate the planned rate of design completion in
light of project realities such as staffing levels, experience, and
requirements volatility.

Performance
Analysis

Figure 3-2a indicates that design progress was behind the original plan at
the end of April, resulting in a replan of the overall activity. Actual
design progress has remained fairly close to the new plan. Further
analysis at the CSCI level (Figure 3-2b) reveals that, while progress on
the units for CSCI A and C is close to plan, less than one third of the
units planned to date for CSCI B have completed design. Additional
analyses of CSCI B’s staffing levels and experience, rework effort, and
changing requirements should help identify the cause of this deviation.

Lessons
Learned

Be careful of major changes in the rate of progress. Once an actual trend
line is established, it is very difficult to modify that rate of completion. A
10% cumulative or 20% per period actual deviation from the plan should
be considered significant.

Part 3 - Analysis Techniques and Examples

Page 197

Design Progress

0

50

100

150

200

250

300

350

Jan 95 Apr 95 Jul 95 Oct 95 Jan 96 Apr 96 Jul 96 Oct 96
Date

Plan 1
Plan 2
Actual

Program: PSM Data as of 30 Nov 95

Figure 3-2a. Design Progress by Date

Design Progress

0

20

40

60

80

100

120

A B C
CSCI

Total
Plan
Plan
to Date
Actual

Data as of 7 Jan 96Program: PSM

Figure 3-2b. Design Progress by CSCI

Part 3 - Analysis Techniques and Examples

Page 198

3.3 SCHEDULE VARIANCE INDICATOR

Issue Schedule and Progress

Category Schedule Performance
`
Selected
Measure

Schedule Variance

Description Provides an indication of schedule progress based on dollars budgeted
per WBS element. The measure addresses the developer’s ability to
complete scheduled activities within the planned time frame and indicates
the extent that the developer is ahead or behind schedule.

Example
Graph

The schedule variance (SV) was graphed using a line chart. This is
calculated as SV = BCWP - BCWS, where BCWP is the budgeted cost
of work performed and BCWS is the budgeted cost of work scheduled.
Data below the 0 line is an indication that the program is behind
schedule, while values above the line indicate the program is ahead of
schedule.

Feasibility
Analysis

Not applicable.

Performance
Analysis

Figure 3-3 indicates that initial progress was behind schedule until
August. The sudden, dramatic drop in September is the greatest
concern, however. Did a large number of people leave the program?
Further analysis of staffing levels and work progress should help identify
the cause. A replan may be necessary.

Lessons
Learned

Investigate large deviations from the schedule. Schedule variance lines
that continue to decrease over multiple months should be monitored
closely. When schedule variance becomes large, a rebaseline should
occur and a realistic plan should be established.

Part 3 - Analysis Techniques and Examples

Page 199

Schedule Variance
Software

-500

-400

-300

-200

-100

0

100

200

300

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Date
Data as of 31 Oct 95Program: PSM

Figure 3-3. Schedule Variance

Part 3 - Analysis Techniques and Examples

Page 200

3.4 INCREMENTAL BUILD CONTENT INDICATOR

Issue Schedule and Progress

Category Incremental Capability

Selected
Measure

Build Content - Component

Description When multiple builds are planned, this indicator helps determine if
capability is being delivered to the customer or to integration and test on
schedule. The graph compares the number of components in each build
that should have been delivered to date, against the number actually
delivered.

Example
Graph

The bar chart was produced by summarizing, for each build, the number
of components 1) originally planned for delivery to date, 2) planned for
delivery to date based on the latest plan, and 3) actually delivered to
integration and test.

Feasibility
Analysis

Evaluate whether the distribution of components across incremental
builds look is reasonable, considering overlapping work effort and the
likelihood of slippage. Also, ensure that the sum of each build’s planned
number of components is equal to the total number of components
scheduled for the final release.

Performance
Analysis

Figure 3-4 shows that components in both Builds 1 and 2 were deferred
to Build 3, increasing its size by over 30%. While all components have
been integrated to date, it is likely that these deferments will result in
delays in testing and may impact customer delivery milestones. Analyze
test schedule and progress data to further assess the impact of these
deferments.

Lessons
Learned

Deferments to later builds without adjustments to the schedule are of
greatest concern. A 5% or greater variance in a single build or a 10%
variance across two or more builds should be considered significant.
Also, make sure that only components accounted for in the planned
figures are included in actual counts.

Part 3 - Analysis Techniques and Examples

Page 201

Incremental Build Content

0

5

10

15

20

25

30

35

40

Build 1 Build 2 Build 3

N
um

be
r

of
 U

ni
ts

 In
te

gr
at

ed

Plan 1
Plan 2
Actual

Data as of 7 Jan 96Program: PSM

Figure 3-4. Incremental Build Content

Part 3 - Analysis Techniques and Examples

Page 202

3.5 EFFORT ALLOCATION INDICATOR

Issue Resources and Cost

Category Effort Profile

Selected
Measure

Effort

Description Used to assess the adequacy of planned effort and analyze the actual
allocation of labor to development activities

Example
Graph

Total software effort was graphed using a line chart (Figure 3-5a)
containing measures from the original plan, the April ‘95 replan, and
actual staff months expended to date.

A bar chart (Figure 3-5b) was used to obtain a more detailed view of
effort allocation by software process activity. The current plan for each
activity and the associated actual data was graphed as of the last
reporting period.

Feasibility
Analysis

Evaluate whether the planned effort distribution is realistic. Additionally,
check that the distribution of effort between the development activities is
realistic. Insure that enough effort has been allocated to early
requirements and design activities and to later testing activities, as these
areas are often underestimated.

Performance
Analysis

Figure 3-5a shows that actuals were initially below the original plan for
several months. The developer had problems staffing the program due to
delays in another program from which personnel were due to transfer. A
replan was implemented, and actuals matched the new plan for several
months, but then exceeded it. To assess the causes of this overrun,
Figure 3-5b was drawn. This showed that additional effort was
expended during software design. Further analysis of staffing and
experience levels indicated that this was due to the developer’s
inexperience with the domain.

Lessons
Learned

Check the rate of changes in effort data. Large numbers of people
normally cannot be effectively added within a very short period. Large
overruns during integration and test may be indicative of quality
problems with the code - there may be significant defects that are
delaying completion.

Part 3 - Analysis Techniques and Examples

Page 203

Effort Allocation

0

20

40

60

80

100

120

140

Jan 95 Apr 95 Jul 95 Oct 95 Jan 96 Apr 96 Jul 96 Oct 96
Date

Plan 1
Plan 2
Actual

Data as of 30 Nov 95Program: PSM

Figure 3-5a. Effort Allocation by Date

Effort Allocation
By Software Activity

0

50

100

150

200

250

300

350

400

450

Requirements Design Implementation Integration
and Test

Activity

Plan to Date
Actual

Data as of 7 Jan 96Program: PSM

Figure 3-5b. Effort Allocation by Activity

Part 3 - Analysis Techniques and Examples

Page 204

3.6 STAFF EXPERIENCE INDICATOR

Issue Resources and Cost

Category Staff Profile

Selected
Measure

Staff Experience

Description Used to assess whether the personnel assigned to the project possess the
domain experience necessary to produce a system that meets customer
needs. The graph compares the development staff’s years of real-time
distributed systems experience to contract requirements.

Example
Graph

Both series in the histogram were produced by sorting the development
staff’s experience data by the real-time distributed systems experience
data item, and then tallying the number of staff members in each of six
experience categories. This produced a distribution of experience levels
which could be charted and compared to contract requirements. Since
contract requirements specify an average number of years of real-time
distributed systems experience (3 years), the staff’s average at the
current time was also calculated and displayed on the graph.

Feasibility
Analysis

Using historical information from similar projects, assess whether the
staff experience requirements to be specified in the contract are
reasonable. Evaluate both what is possible (given the number of people
available with relevant domain experience and their backgrounds in
developing technology solutions) and what is needed.

Performance
Analysis

Figure 3-6 shows that the development organization proposed and
started the project with a staff reporting, on average, 3.43 years of real-
time distributed systems experience. In order to further investigate
recent schedule slippage and low productivity new staff experience data
was requested. The new data reveals that, while staff size has remained
constant in spite of turnover, experience levels of replacement staff
members’ have dropped. Average experience is now only 2.43 years.
Additional analysis should be performed of skill requirements for the
tasks remaining, and staff allocations. The program manager should
decide if some staff members should be replaced with more experienced
personnel or whether the experienced members can be leveraged to avoid
further staffing changes.

Part 3 - Analysis Techniques and Examples

Page 205

Lessons
Learned

Analysis of staff experience is usually only performed at major milestones
on large projects, unless other analyses point to a staffing problem.
Ensure that years of experience data is kept up to date. Be sure that
experience obtained on the current project is considered when interim
analyses are performed.

Part 3 - Analysis Techniques and Examples

Page 206

Staff Experience
Real Time Distributed Software

0

5

10

15

20

< 1 1 - 2 2 - 3 3 - 4 4 - 5 > 5
Years of Experience

Initial
Current

Contract Requirement - 3 years
Initial - 3.43
Current - 2.43

Data as of 31 Dec 96Program: PSM

Figure 3-6. Staff Experience

Part 3 - Analysis Techniques and Examples

Page 207

3.7 COST PROFILE INDICATOR

Issue Resources and Cost

Category Cost Performance

Selected
Measure

Cost Profile

Description Used to evaluate costs based on planned versus expended costs. Used to
assess whether a program can be expected to be completed within cost
constraints.

Example
Graph

Figure 3-7 shows a line chart used to present the cost information. In
addition to cumulative plan and actual cost, the graph also contains the
budgeted cost (top static line), and the funding profile (funding provided in
increments).

Feasibility
Analysis

Ensure that the planned cost is realistic over the period of performance.
Large changes in the rate per period should be evaluated for feasibility.
Figure 3-7 shows a relatively consistent planned expenditure rate. The
funding profile should be evaluated to ensure that adequate funding has
been provided to meet planned costs. Any delays in funding should be
assessed for impact on the program.

Performance
Analysis

Figure 3-7 shows a funding problem in March ‘95. Some development
activities had to be delayed until the funding problem was resolved and
additional funds were provided. Actuals were initially below plan, but are
now tracking close to planned costs. Questions to ask about variances and
overruns include: Are overruns due to activities costing more than
planned? Is work beginning ahead of schedule? If actual cost is below
plan, does that mean that the program is behind schedule or have activities
cost less than planned? Investigating these other issues will help isolate
the problem.

Lessons
Learned

Evaluate major changes in the rate of actual cost expenditures. Since
software development is a very labor intensive activity, this data should
track closely to effort data.

Part 3 - Analysis Techniques and Examples

Page 208

Cost Profile

0

100

200

300

400

500

600

700

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Date

Plan
Actual

Budget

Funded

Data as of 31 Aug 95Program: PSM

Figure 3-7. Cost Profile

Part 3 - Analysis Techniques and Examples

Page 209

3.8 RESOURCE UTILIZATION INDICATOR

Issue Resources and Cost

Category Environment Availability

Selected
Measure

Resource Utilization

Description Helps determine whether the test facilities needed to test the system are
available and being used.

Example
Graph

A line chart was produced containing four distinct utilization measures:
1) planned test facility availability (based on facility predictions), 2)
actual test facility availability to date (based on total time minus actual
maintenance downtime), 3) scheduled project utilization (based on
project schedule), and 4) actual project utilization to date (based on
project hours logged).

Feasibility
Analysis

Check that the scheduled utilization of the test facility for this program is
achievable given predicted test facility availability. Ensure that usage by
other programs and scheduled downtime have been accounted for in
availability figures. Ensure that predictions are consistent with recent
past history. Evaluate the risks which may arise in scheduling the test
facilities resources if testing is delayed.

Performance
Analysis

Analysis of Figure 3-8 shows that testing at the facility started one month
late. Also, a shortfall in the facility’s availability in September appears to
have impacted progress that month. Since the actual hours used to date
are significantly below planned, a replan is probably needed. In addition,
the cause of the shortfall in availability should be investigated to help
reduce changes in future availability. Also, review testing progress to
date in order to gain a more complete analysis of the situation.

Lessons
Learned

Unexpected variances in either resource utilization or availability should
be investigated. This may help prevent future problems.

Part 3 - Analysis Techniques and Examples

Page 210

Resource Utilization
Test Facilities

0

20

40

60

80

100

120

140

Jul Aug Sep Oct Nov Dec

Date

Scheduled
Used

Planned Availability

Actual Availability

Start of Test

Data as of 31 Sep 95Program: PSM

Figure 3-8. Resource Utilization

Part 3 - Analysis Techniques and Examples

Page 211

3.9 SOFTWARE SIZE INDICATOR

Issue Growth and Stability

Category Product Size and Stability

Selected
Measure

Lines of Code

Description Provides an estimate of software size, which is the major variable used to
estimate software development effort and schedule. Used to monitor
progress by comparing actual code developed and modified over time to
plans for code development and growth. Unplanned additions and
changes to code can adversely influence schedules and costs.

Example
Graph

A line chart was used to show changes over time to: 1) overall software
size estimates; and 2) actual size growth as the development proceeds.
Size is measured in source lines of code. A corresponding bar chart
shows the size breakdown by CSCI, and reflects the changes due to
replans.

Feasibility
Analysis

Compare total estimated lines of code and the estimated code growth
with other similar projects. Correlate size estimates over time with
staffing profiles for the development team. There should be sufficient
staff assigned during each time period to complete coding assignments,
after taking into account rework, concurrent assignments, non-project
time, and programmer productivity.

Performance
Analysis

Figure 3-9a shows progress in actual code development. Code
production is approaching the current size estimate. The graph also
shows growth in the size estimate. Figure 3-9b shows that most of the
estimated size increase was attributable to CSCI C.

Lessons
Learned

It is not unusual for there to be moderate increases in total software size
over the original estimates. Increases of up to 20% are common. Larger
increases in estimates or actuals should be investigated.

Part 3 - Analysis Techniques and Examples

Page 212

Software Size
Lines of Code

0

5,000

10,000

15,000

20,000

Jan 95 Apr 95 Jul 95 Oct 95 Jan 96 Apr 96 Jul 96 Oct 96
Date

Plan
Actual

Data as of 30 Apr 96Program: PSM

Figure 3-9a. Software Size (LOC)

Software Size
By CSCI

0

2,000

4,000

6,000

8,000

10,000

A B C

CSCI

Plan 1
Plan 2
Plan 3

Data as of 1 May 96Program: PSM

Figure 3-9b. Software Size (CSCI)

Part 3 - Analysis Techniques and Examples

Page 213

3.10 REQUIREMENTS STABILITY INDICATOR

Issue Growth and Stability

Category Functional Size and Stability

Selected
Measure

Requirements

Description Provides an early measure of software size. Used to monitor changes to
requirements throughout a project, which can serve as a leading indicator
of delays, rework, and cost increases.

Example
Graph

A line chart (Figure 3-10a) was used to show two related pieces of
information. The top line shows the trend in total number of actual
requirements defined to date. Data points past the “as of” date reflect
estimates. The bottom line is the total number of requirements either
added, changed, or deleted during the reporting period. A bar chart
(Figure 3-10b) was also produced to provide more detail about whether
the changes made were requirements additions, modifications, or
deletions.

Feasibility
Analysis

If requirements growth has been estimated for the project, use other
program knowledge to evaluate whether the amount of change expected
is realistic. Consider things like the developer’s capability, the team’s
understanding of the problem, and the number of customers involved.

Performance
Analysis

Figure 3-10a shows an overall increase in requirements after the March
SSR, which was expected, and another unexpected increase this month
which can be traced to the PD. held in June. Figure 3-10b indicates that
the changes were the result of additions and modifications to already
defined requirements. The magnitude (approximately 20% of the total
requirements were affected during this last period and total requirements
increased by over 10%) and timing (the project is well into the design
activity) of these requirements is a cause for concern. Resource
allocations, effort estimates, budgets, and schedules may be in jeopardy
and should be reevaluated.

Lessons
Learned

Constantly changing requirements or a large number of additions after
requirements reviews are leading indicators of schedule and budget
problems later in the project. Requirements should be tracked at a lower
level, such as by CSCI.

Part 3 - Analysis Techniques and Examples

Page 214

Requirements Stability

0

10

20

30

40

50

60

70

80

90

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Date

Total
Changes

SSR PDR

Data as of 30 Jun 95Program: PSM

Figure 3-10a. Requirements Stability

Requirements Stability
By Type of Change

-20

0

20

40

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Date

Added
Modified
Deleted

SSR PDR

Data as of 30 Jun 95Program: PSM

 Figure 3-10b. Requirements Stability by Type Change

Part 3 - Analysis Techniques and Examples

Page 215

3.11 RESPONSE TIME INDICATOR

Issue Growth and Stability

Category Target Computer Resource Utilization

Selected
Measure

Response Time

Description Measures whether the system can perform standard on-line functions in a
timely manner by comparing actual response times to the required
response times.

Example
Graph

A bar graph was used to compare the results of a series of response time
tests against a contract-specified on-line response time requirement. A
series of test runs were executed for selected sets of representative
queries and update functions. For each function, response time measures
were collected (using an automated Monitor tool). The collected data
sets were then averaged. The sample graph shows a series of three test
runs and indicates the acceptable average response time as a straight line.

Feasibility
Analysis

Ensure that the response time requirement specified is feasible given
published or observed statistics such as database and hardware
benchmarks, performance models, or operational results from similar
systems.

Performance
Analysis

Figure 3-11 shows that query-type functions were initially exceeding
response time requirements. These functions were subsequently
modified to improve performance and are now within the acceptable
range. Update functions initially performed well, but performance
problems were noted in the second test. These were apparently resolved
prior to the third test. When results are outside the acceptable range, a
more detailed analysis by component or transaction can help pinpoint the
problem code.

Lessons
Learned

Define the criteria for choosing the functions whose response time will
be measured (typical, importance/criticality, frequency of occurrence).
Also determine what form of response time measures should be
compared to the planned or target figure (an average, sample, worst
case). Factors that may influence the validity of actual response time
measures include: 1) not simulating sufficient load on the target machine
during the tests, 2) not sampling representative functions, and 3) using a
test database whose size is smaller than the operational version.

Part 3 - Analysis Techniques and Examples

Page 216

Response Time
On-Line Functions

0

10

20

Query Update
Function Type

First
Test
Second
Test
Third
Test

Contract
Requirement
(10 Sec.)

Data as of 30 Jun 95Program: PSM

Figure 3-11. Response Time for On-Line Functions

Part 3 - Analysis Techniques and Examples

Page 217

3.12 PROBLEM REPORT STATUS INDICATOR

Issue Product Quality

Category Defect Profile

Selected
Measure(s)

Problem Report Trends

Description Problem Status provides information on the number of problem reports
(PRs) found over time, and their status (open/closed). The quantity of
PRs provides an indication of rework effort and overall product quality.
Closure rates help assess progress by indicating the amount of work
(rework) left to be done.

Example
Graph

The top line of the line chart in Figure 3-12a shows the cumulative
number of PRs detected to date. The bottom line shows the number of
PRs that have been closed. Figure 3-12b shows the total number of PRs
still open, by priority code.

Feasibility
Analysis

Not applicable.

Performance
Analysis

The top line in Figure 3-12a indicates that problems have been steadily
discovered over the past year. However, in the past several months the
discovery rate appears to have tapered off. If the reason for this is that
testing is successfully completing and the project is nearing completion,
this is a good sign. If the reason is that testing has prematurely slowed
or halted, this may indicate a significant problem. The bottom line
indicates that closure rate has kept pace with the discovery rate. Figure
3-12b shows that over half of the remaining open PRs are priority 1 and
2. These PRs should be reviewed to determine whether this is a cause
for concern.

Lessons
Learned

The closure rate should remain similar to the discovery rate. Large gaps
between the two trend lines indicates that problem correction is being
deferred, which could result in serious schedule, staffing, and budget
problems later in the project. A flat PR discovery trend line during
design, coding, or testing may indicate that reviews and tests are not
being performed, and should be investigated. Monitor open PRs by
priority to insure that high priority defects are being fixed quickly.

Part 3 - Analysis Techniques and Examples

Page 218

Problem Report Status

0

250

500

750

1000

1250

1500

Jan 95 Apr 95 Jul 95 Oct 95 Jan 96 Apr 96 Jul 96 Oct 96
Date

Discovered
Closed

Data as of 31 Dec 95Program: PSM

Figure 3-12a. Problem Report Status

Problem Report Status
Open by Priority

0

20

40

60

80

100

1 2 3 4 5

Priority

Data as of 31 Dec 95Program: PSM

Figure 3-12b. Problem Report Status Open by Priority

3.13 PROBLEM REPORT AGING INDICATOR

Part 3 - Analysis Techniques and Examples

Page 219

Issue Product Quality

Category Defect Profile

Selected
Measure(s)

Problem Report Aging

Description Provides information on the number and age of open problem reports. The
age distribution of problem reports help assess whether or not problems are
being dealt with in a timely manner.

Example
Graph

The bar chart includes all open PRs, divided into categories by age. This
was done by first calculating, for each PR, the number of days that have
elapsed since the PR was initially reported. PRs were then grouped by age
categories and graphed.

Feasibility
Analysis

Not applicable.

Performance
Analysis

Figure 3-13 shows an average open age of 5.7 weeks for the 60 open
problem reports. This is below the target of 8 weeks. Assessing whether
the age of open PRs is a problem requires an understanding of the length of
program, the program’s current status, commitments to users, and the type
and severity of the defects still open.

Lessons
Learned

When measurement results indicate that problem correction is being
deferred, it is likely that schedules, staffing levels, and budgets will be
impacted later in the project. During testing, test progress is often
significantly impacted by the deferment of problem correction. During
maintenance, the age of problems reported by customers should be
monitored to insure that customer problems are addressed in a timely
manner.

Part 3 - Analysis Techniques and Examples

Page 220

Problem Report Aging
Open Problem Reports

0

20

40

60

80

100

< 1 1 - 2 3 - 4 5 - 8 9 - 18 > 18 weeks

Weeks Open

Average = 5.7 weeks
Target < 8 weeks

Data as of 7 Jan 96Program: PSM

Figure 3-13 Problem Report Aging

Part 3 - Analysis Techniques and Examples

Page 221

3.14 DEFECT DENSITY INDICATOR

Issue Product Quality

Category Defect Profile

Selected
Measure

Defect Density

Description Used to assess product quality by normalizing the number of defects
detected in a product by the product’s size. Can be used to identify
which components, subsystems, or CSCIs have the most quality-related
problems.

Example
Graph

A table was used to show CSCI level defect densities for the various
development organizations that participated in a particular project.
Defect densities were calculated by dividing the number of defects
identified to date by CSCI size.

Feasibility
Analysis

Not Applicable.

Performance
Analysis

Figure 3-14 indicates that organization Z’s defect densities are higher
than average. This may mean that CSCI’s F & G will need more
attention, such as additional reviews or testing. Other project-related
factors such as component complexity, defect distribution by
classification, and organizational factors such as process maturity should
also be reviewed to gain a better understanding of the reasons for these
densities.

Lessons
Learned

Defect densities can be generated at lower levels to identify specific
components which should be subject to more quality control or should be
targeted for redevelopment. The overall quality of a development
project can often be evaluated by looking at the first 6-12 months of
post-release defect densities. Large numbers of defects reported from
the field may be the result of requirements not being met, inadequate
testing, or poor code quality.

Part 3 - Analysis Techniques and Examples

Page 222

Defect Density

Org CSCI Size
(KSLOC) Defects Defect Density

(Defects/KSLOC)
X A 44 48 1.1
X B 32 60 1.9
Y C 36 36 1.0
Y D 28 33 1.2
Y E 34 42 1.2
Z F 15 46 3.1
Z G 9 30 3.3

Total 198 295 1.5

Program: PSM Data as of 30 Jun 95

Figure 3-14. Defect Density

Part 3 - Analysis Techniques and Examples

Page 223

3.15 SOFTWARE COMPLEXITY INDICATOR

Issue Product Quality

Category Complexity

Selected
Measure

Cyclomatic Complexity

Description Measures the number of logic paths in a component. Can be used to
assess the amount of testing required, predict component defect density,
estimate future maintenance effort, identify the components that should
be redesigned or reimplemented. Component complexity measures are
typically compared to a standard or required threshold.

Example
Graph

A bar chart was used to identify the number of components whose
complexity measures fall outside the threshold. Each component within
CSCI A was measured using an automated Code Complexity Analysis
Tool. Component complexity values were separated into six complexity
range categories and then graphed. Then, the count of components in
each range was divided by the total number of components, resulting in
the percentage used to graph each bar on the chart. The threshold line
divides the chart into acceptable and unacceptable ranges.

A table was also produced by sorting the raw data by complexity, and
showing only those components whose complexity was higher than the
threshold.

Feasibility
Analysis

Evaluate whether the selected threshold can be met if one is set. The
types of software being developed and the language used should be
considered when evaluating the threshold selected.

Performance
Analysis

Figure 3-15a indicates that about 80% of the components in CSCI A are
less than or equal to the maximum threshold (10) for component
complexity. The corresponding table (3.15b) identifies the specific
components that exceed complexity limits. Further analysis of these
components may identify one or more causes which are contributing to
high complexity. A decision should be made about whether these
components should be modified or rewritten.

Lessons
Learned

This measure is not generally available until after a component has been
coded. An automated code analysis tool is needed to accurately and
efficiently produce the measure.

Part 3 - Analysis Techniques and Examples

Page 224

Software Complexity
CSCI A

0

10

20

30

40

50

60

0 - 5 6 - 10 11 - 15 16 - 20 21 - 25 > 25
Cyclomatic Complexity

Threshold

Data as of 7 Jan 96Program: PSM

Figure 3-15a. Software Complexity CSCI A

Software Complexity
CSCI A

Units with Complexity > 10

Unit Cyclomatic
Complexity

A1 53
A2 49
A3 32
A4 27
A5 25
A6 25
A7 20

Program: PSM Data as of 7 Jan 96

Figure 3-15b. Software Complexity CSCI A
Units That Exceed Complexity Limits

Part 3 - Analysis Techniques and Examples

Page 225

3.16 SOFTWARE PROCESS MATURITY INDICATOR

Issue Development Performance

Category Process Maturity

Selected
Measure

CMM (Capability Maturity Model) Level

Description Used to gain an understanding of an organization’s relative software
development capability. The CMM Level measure results from a formal
software capability evaluation (SCE) of an organization’s software
engineering and project management processes. Often used to set
standards for selecting a software development contractor and to select
among competing development organizations.

Example
Graph

A table was used to display process maturity scores for three
organizations. The score was produced using the formal SEI Capability
Maturity Model-based SCE assessment procedures. Highlights
(strengths and weaknesses) from the assessment findings were also noted
in the table.

Feasibility
Analysis

Not Applicable.

Performance
Analysis

Figure 3-16 reflects the results of SCE assessments for three
organizations. The rating scale for SCE assessments ranges from 1 to 5,
where 5 indicates an organizations with a high level of software
development capability (i.e., a very mature software engineering
process); Company B has received a higher rating than companies A and
C. However, all three organization have a score which either meets or
exceeds the target level set as part of the contract requirements. When
this analysis is being performed as part of the contractor selection
process, detailed findings from the assessment should be reviewed with
special attention given to the critical processes a contractor must possess
for this contract.

Lessons
Learned

The process maturity score is only as good as the assessment process
that produced it. Also, consider how long ago the SCE was performed
and recognize that a maturity score is given at an organization-level,
based on a sampling of projects.

Part 3 - Analysis Techniques and Examples

Page 226

Software Process Maturity
SEI Capability Maturity Model

Organization Level Strengths Weaknesses
Target 3

Proposal 1
Company A

(Prime)
3

Effective SEPG and task team
structure, with many improvements
implemented. Mature testing process.

No defined measurement
process/framework; measures not
integrated into project management.
Reviews are informal. Test
automation is new and unproven.

Proposal 1
Company B

(Subcontractor)
4

Measurement used in-process to
make decisions. Historical
measurements and lessons learned
database used for project planning.
Good subcontract management
process.

Defect prevention/causal analysis just
getting started. Few advanced tools
used.

Proposal 2
Company C
(Prime Only)

3

Good CM, testing, inspections with
automation support

Planned measurement data not
established for progress-related
issues; measurements not used to
make project decisions.

Program: PSM Data as of 7 Jan 96

Figure 3-16 Software Process Maturity
SEI Capability Maturity Model

Part 3 - Analysis Techniques and Examples

Page 227

3.17 SOFTWARE PRODUCTIVITY INDICATOR

Issue Development Performance

Category Productivity

Selected
Measure

Product Size/Effort Ratio

Description Indicates the amount of work produced relative to the effort expended.
If an actual rate can be established early in a project or one can be
predicted based on historical data, it can be used to estimate the
remaining effort needed to complete the program.

Example
Graph

A bar chart (Figure 3-17) was used to compare a project’s planned
productivity rates with an actual rate to date, and to proposed alternative
replan rates. Each bar was produced by dividing work effort (reported in
staff months) into the product size measure-Source Lines Of Code
(SLOC). In this example, actual productivity is around 100 SLOC/staff
month.

Feasibility
Analysis

Compare planned productivity rates to past projects with similar
characteristics (e.g., tools and methods used, staff skills, language used,
etc.). Also, cross-check program data by calculating required
productivity based on the present plan data, then compare those results
to the planned productivity rates. Consider issues like learning curve,
requirements volatility, expected turnover, and soft issues like staff
morale and teamwork when evaluating the feasibility of a chosen rate.

Performance
Analysis

Figure 3-17 shows that two productivity rates were used as the basis for
developing project plans, about 170 for Build 1 and 110 for Build 2.
However, with Build 1 well under way, actual productivity is only 100,
significantly lower than planned. So, either productivity must be
increased or substantially more effort will be needed to develop the
complete product. Further analysis to determine the cause of lower-
than-expected productivity should be performed before deciding on a
course of corrective action. The third region of the bar chart shows two
action plans. Plan 1 proposes increasing productivity by the end of Build
1 (slightly) and substantially increasing it for Build 2. Plan 2 assumes the
rate throughout the remainder of the project will be similar to what has
already been achieved, and adds a new Build 3 to complete production at
this rate. Unless major changes could be immediately introduced, which
is highly unlikely, option 2 appears to be a more realistic alternative.

Part 3 - Analysis Techniques and Examples

Page 228

Lessons
Learned

If there is a significant change in productivity rates during a project,
attempt to discover the underlying reasons for the change. Unplanned
rework is a frequent cause of low productivity.

Part 3 - Analysis Techniques and Examples

Page 229

Software Productivity

0

20

40

60

80

100

120

140

160

180

Proposal Actuals
to Date

Replan
Option 1

(2 Builds)

Replan
Option 2

(Add Build 3)

S
LO

C
 p

er
 S

ta
ff

 M
on

th

Build 1
Build 2
Build 3

Program: PSM Data as of 31 Dec 96

Figure 3-17 Software Productivity

Part 3 - Analysis Techniques and Examples

Page 230

3.18 REWORK EFFORT INDICATOR

Issue Development Performance

Category Rework

Selected
Measure

Rework Effort

Description Assesses the amount of effort expended to fix defects. Can be used to
compare the amount of effort attributable to rework against the budget
for rework.

Example
Graph

Two bar charts were produced. The first chart (Figure 3-18a) reports
rework as a separate major category of work effort and compares
rework planned to the amount of rework actually performed to date.
The second chart (Figure 3-19b) was produced by an organization whose
time reporting system supports the collection of rework at the
development activity level (i.e., requirements, design, etc.). For each
chart, the accumulated number of planned and actual hours is used to
produce the bars.

Feasibility
Analysis

All projects will experience rework and it should be planned for.
Analyze rework planned as a percentage of overall effort and look at the
distribution of planned rework across project phases. Compare these
percentages and distributions to the actual rework figures from recent,
similar past projects. Achieving lower amounts of rework typically
requires early defect control techniques such as reviews and inspections,
and higher levels of process capability (see 3.16).

Performance
Analysis

Figure 3-18a, reported during the integration and testing activity of the
project, shows that planned rework has already been exceeded by over
100%. This chart cannot help identify the activities where the rework
occurred, however. Figure 3-18b can be used when a more sophisticated
rework reporting system is in place. In this chart, rework has been
tracked at the software activity level and only the rework figures are
graphed. This example shows that rework during both requirements and
design was much greater than expected, but that rework during
implementation was close to planned.

Part 3 - Analysis Techniques and Examples

Page 231

Lessons
Learned

Rework occurs during all phases of a project. Taking the extra time up
front to do things right the first time can reduce overall rework on a
project. Few organizations do a good job of tracking rework. Most
time accounting systems do not include separate rework tasks. In lieu of
time reporting, rework can sometimes be tracked using review/inspection
and problem report data.

Part 3 - Analysis Techniques and Examples

Page 232

Rework Effort
Compared to Development Effort

0

50

100

150

200

250

300

350

Requirements Design Implemenation Integration
and Test

Rework - All
Activities

Activity

Plan
to Date
Actual

Data as of 7 Jan 96Program: PSM

Figure 3-18a. Rework Activity Compared to Development Effort

Rework Effort
By Activity

0

20

40

60

80

100

120

Requirements Design Implemenation Integration
and Test

Activity

Plan
to Date
Actual

Data as of 7 Jan 96Program: PSM

Figure 3-18b. Rework Activity By Activity

Part 3 - Analysis Techniques and Examples

Page 233

3.19 SOFTWARE ORIGIN INDICATOR

Issue Technical Adequacy

Category Technology Impacts

Selected
Measure

Lines of Code

Description Shows the amount of code by source (new, modified, retained, deleted,
GOTS, COTS), which can serve as an indicator of the amount of work
to be performed on a project.

Example
Graph

A stacked bar chart was used to show the amount and distribution of
developed and non-developed code. The non-developed portion of the
bar is an estimate of the amount of code that would have to be
developed if the COTS/GOTS software was not used; it is not an actual
estimate of the COTS software itself (since this is not usually available
and only a small portion of the COTS tool may be used).

Feasibility
Analysis

The distribution of developed to non-developed code should be reviewed
to assess whether expectations for the amount of code that will not be
developed is realistic. The amount of new code needed to integrate
COTS and non-COTS software should also be considered.

Performance
Analysis

Figure 3-19 shows three planned and one actual size measure. Plan 1
shows an almost 50-50 split between non-developed and new code for
the project. In plan 2, this ratio is revised; more new code development
is planned. Plan 3 shows an additional increase in new code, resulting in
an overall size increase. The actual size measures are close to plan 3
estimates, with only approximately 20% of the final product the result of
non-developed code. This change most likely resulted in schedule delays
and effort increases.

Lessons
Learned

Changes in assumptions concerning the use of COTS/GOTS software or
the amount of code that can be reused, can significantly impact project
schedules and budgets. Plans should be re-evaluated when this occurs.

Part 3 - Analysis Techniques and Examples

Page 234

Software Origin
Developed Versus Non-Developed Code

0

500

1,000

1,500

2,000

2,500

Plan 1 Plan 2 Plan 3 Actual

S
ou

rc
e

Li
ne

s
of

 C
od

e
(In

 T
ho

us
an

ds
)

Non-Developed
(COTS, Reuse)
Developed
(New, Modified)

Data as of 7 Jan 96Program: PSM

Figure 3-19 Software Origin Developed Versus Non-Developed Code

Part 3 - Analysis Techniques and Examples

Page 235

CHAPTER 4 – INTEGRATED INDICATOR EXAMPLES

This chapter provides examples of how sets of indicators can be
used together to address the issues typically of concern during
particular phases of the software life cycle. An integrated analysis
approach which examines related indicators together has been found
to be very effective for gaining insight into an issue. These are
examples only and do not represent a definitive set that should be
applied to all programs.

The first three examples in this chapter assume that the project
being monitored is in the middle of a major development activity.
Each example starts with the basic analysis of a progress-related
issue and proceeds through a series of supplemental analyses, in an
attempt to better understand project status or to uncover the
underlying cause of a problem. The fourth example in this chapter
shows how an organization might use a set of indicators to analyze
maintenance issues during the post-development support phase.

The following examples are included:

Identifier Analysis Focus Indicators
4.1 Design Completion Design Progress

Staff Level

4.2
Test Completion Implementation Progress

Test Progress
Problem Report Status
Staff Level

4.3
Readiness for
Delivery

Test Progress
Problem Report Status
Software Reliability
CPU Utilization

4.4
Maintenance Requirements Stability

Changes Implemented
Software Reliability
Milestone Progress

Part 3 - Analysis Techniques and Examples

Page 236

4.1 DESIGN COMPLETION ANALYSIS

Description As a project completes the system design phase and the focus shifts to
implementation activities such as coding and unit testing, the staffing
also shifts from primarily analysts to programmers. Therefore, it is
important not only to monitor progress during this phase, but to also
anticipate how changes in the schedule will impact staffing.

Basic Analysis In Figure 4-1, the primary design progress indicator used is the work
unit progress measures for units designed (a). This compares actual
units completing design each week to the planned rate of completion.
This indicator reveals that actual progress is significantly under plan as
of July. The plan data line also indicates that all units should have
completed design by the next month.

Supplemental
Analyses

A closer look at the CSCI level indicator (b) reveals that, while all
CSCIs are behind schedule, CSCI B is significantly below its
completion plan.

The overall staff level (c) indicates that the project is currently staffed
with approximately the right number of people, according to the
monthly staffing plan. However, a drop in staffing occurred in May. It
was during that timeframe that some staff turnover was experienced. Is
the project behind schedule due primarily to the May dip in staffing?
An analysis of the current month’s actual staff level by labor category
(d) shows that, while the original staff plan for design included mainly
systems engineers and senior software engineers, the new design team
composition is quite different than planned. The May changes in
staffing resulted in the loss of several senior designers. Instead of
bringing on new analysts to complete the design, the programmers
assigned to join the project in July were brought onto the project early
and assigned to design tasks. This had a negative impact. The
programmers didn’t have the experience to perform these tasks and the
remaining designers were delayed bringing the new team members up
to speed.

A revised plan for the remaining project activities is recommended.

Part 3 - Analysis Techniques and Examples

Page 237

a)
b

)

c)
d

)

D
es

ig
n

P
ro

gr
es

s

0255075

10
0

12
5

15
0

17
5

20
0 Ja

n
Fe

b
M

ar
A

pr
M

ay
Ju

n
Ju

l
A

ug
S

ep
O

ct
N

ov
D

ec

D
at

e

Number of Units Completing
Design

P
la

n
A

ct
ua

l

D
at

a
as

 o
f 1

5
Ju

l 9
5

P
ro

gr
am

: P
S

M

S
ta

ff
 L

ev
el

B
y

La
bo

r
C

at
eg

or
y

05101520

S
r.

S
ys

te
m

s
E

ng
in

ee
r

Jr
. S

ys
te

m
s

E
ng

in
ee

r
S

r.
 S

of
tw

ar
e

E
ng

in
ee

r
Jr

. S
of

tw
ar

e
E

ng
in

ee
r

La
bo

r
C

at
eg

or
y

Number of Staff

P
la

n
A

ct
ua

l

D
at

a
as

 o
f 1

5
Ju

l 9
5

P
ro

gr
am

: P
S

M

D
es

ig
n

P
ro

gr
es

s
B

y
C

S
C

I

0102030405060

A
B

C

C
S

C
I

Number of Units
Completing Design

To
ta

l
P

la
n

P
la

n
to

 D
at

e
A

ct
ua

l

D
at

a
as

 o
f 1

5
Ju

l 9
5

P
ro

gr
am

: P
S

M

S
ta

ff
 L

ev
el

0510152025

Ja
n

Fe
b

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

D
at

e

Number of Staff

P
la

n
A

ct
ua

l

D
at

a
as

 o
f 1

5
Ju

l 9
5

P
ro

gr
am

: P
S

M

Figure 4-1. Design Progress

Part 3 - Analysis Techniques and Examples

Page 238

4.2 TEST COMPLETION ANALYSIS

Description Two issues that impact test completion and often result in test schedule
problems are: 1) not receiving components on schedule to test, and 2)
waiting for fixed components to return to test after defects have been
identified. This example shows how four indicators can be used to
monitor test progress during the integration and test phase of a software
development program.

Basic Analysis The implementation progress line graph (a) indicates that implementation
of components (and consequently, delivery of components to the testing
group was late) and that, while all components have been delivered to
date, they were finally delivered weeks behind the original schedule. Test
progress is then shown (b). Three progress measures are compared: 1)
the original plans for test component completion; 2) components upon
which tests have been attempted; and 3) components that have passed
testing. Not surprisingly, testing which was scheduled to start during
week 4, did not attempt to test as many components as planned, and
they also did not pass as many components as planned. While
components attempted have remained fairly close to planned, components
actually passed are well below plan.

Supplemental
Analyses

An assessment of problem report status (c) indicates that testing has
discovered a large number of problems to date. The closure rate,
however, is not keeping pace with the discovery rate. Additionally, some
high priority PRs are still open, which may also be impacting test
progress. This may explain why the “components passed” trend line (b)
has recently leveled off. It may be that a large number of components are
actually being tested, but have not been “passed” due to problem reports
found. Or, it may be that components originally delivered to test have
been returned to development awaiting defect removal, meaning that
testing cannot be completed for those components.

Test staffing (d) was scheduled to taper off, but the delays have
prevented this. Based on developer input regarding new plans for fixing
the outstanding PRs, test schedules and staffing plans must be revised.

Part 3 - Analysis Techniques and Examples

Page 239

a)
b

)

c)
d

)

Im
pl

em
en

ta
tio

n
P

ro
gr

es
s

02040608010
0

6
Ja

n
24

 J
an

11
 F

eb
29

 F
eb

18
 M

ar

D
at

e

Number of Components

P
la

n
A

ct
ua

l

D
at

a
as

 o
f 2

9
Fe

b
96

P
ro

gr
am

: P
S

M

S
ta

ff
 L

ev
el

Te
st

 O
rg

an
iz

at
io

n

012345678910

6
Ja

n
24

 J
an

11
 F

eb
29

 F
eb

18
 M

ar

D
at

e

Number of Staff

P
la

n
A

ct
ua

l

D
at

a
as

 o
f 2

9
Fe

b
96

P
ro

gr
am

: P
S

M

P
ro

bl
em

 R
ep

or
t S

ta
tu

s

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

6
Ja

n
24

 J
an

11
 F

eb
29

 F
eb

18
 M

ar

D
at

e

Number of Problem Reports

D
is

co
ve

re
d

C
lo

se
d

O
pe

n
P

TR
s

by
 P

rio
rit

y
H

ig
h

=
5

M
ed

iu
m

 =
 6

5
Lo

w
 =

 1
55

D
at

a
as

 o
f 2

9
Fe

b
96

P
ro

gr
am

: P
S

M

Te
st

 P
ro

gr
es

s
C

om
po

ne
nt

s
S

uc
ce

ss
fu

ly
 T

es
te

d

02040608010
0

6
Ja

n
24

 J
an

11
 F

eb
29

 F
eb

18
 M

ar

D
at

e

Number of Components

P
la

n
A

tt
em

pt
ed

P
as

se
d

D
at

a
as

 o
f 2

9
Fe

b
96

P
ro

gr
am

: P
S

M

Figure 4-2. Test Completion

Part 3 - Analysis Techniques and Examples

Page 240

4.3 READINESS FOR DELIVERY ANALYSIS

Description As a system approaches its delivery date, a number of issues may
influence the decision to release the product. In addition to assuring
that all testing has been completed, it is often necessary to demonstrate
that certain contract requirements have been met. For example, there
may be identified constraints that must be accommodated or specified
thresholds that must be met. Figure 4-3 contains a set of diverse
indicators which represent the specific concerns for this sample
program prior to release.

Basic Analysis The test progress graph (a) reveals that requirements testing is
proceeding close to plan, with almost 80% of requirements tested to
date. With a release date scheduled at the beginning of week 15, it
appears that testing can be completed as scheduled.

Supplemental
Analyses

A look at the number and severity of open problem reports (b) indicates
that, while a large number of PRs remain open, only 6 are high priority
(priority 1 or 2). These will have to be fixed before the system can be
released. The remaining PRs should probably be reviewed to ensure
that deferment of those problems will not adversely affect usability or
customer satisfaction.

Software reliability (c) is calculated by logging the total number of
usage hours that elapse between failures during acceptance test, is
approaching the acceptable minimum of 100 hours between failures.
The trend line continues to rise. The failure interval doesn’t appear to
be a cause for concern at this point.

The final issue being monitored is CPU utilization. Contract
requirements call for 50% reserve capacity. Tests show that current
utilization levels are above the 50% threshold, but only slightly.
Reducing this rate would require additional changes to some programs
that have otherwise been certified as working properly. This rework
decision could delay delivery. The program manager may decide to
make a trade off by accepting a system that exceeds the desired
threshold, in order to allow the system to be delivered on time.

Part 3 - Analysis Techniques and Examples

Page 241

a)
b

)

c)
d

)
C

P
U

 U
til

iz
at

io
n

0102030405060708090

10
0 27

 J
an

17
 F

eb
9

M
ar

30
 M

ar
20

 A
pr

D
at

e

Percent of CPU Cycles

R
es

er
ve

D
at

a
as

 o
f 3

0
M

ar
 9

6
P

ro
gr

am
: P

S
M

S
of

tw
ar

e
R

el
ia

bi
lit

y

02040608010
0

12
0 27

 J
an

17
 F

eb
9

M
ar

30
 M

ar
20

 A
pr

D
at

e

Hours Between Failures

Th
re

sh
ol

d

D
at

a
as

 o
f 3

0
M

ar
 9

6
P

ro
gr

am
: P

S
M

P
ro

bl
em

 R
ep

or
t S

ta
tu

s
O

pe
n

by
 P

ri
or

ity

020406080

10
0 27

 J
an

17
 F

eb
9

M
ar

30
 M

ar
20

 A
pr

D
at

e

Number of Problem Reports

H
ig

h
M

ed
iu

m
Lo

w

D
at

a
as

 o
f 3

0
M

ar
 9

6
P

ro
gr

am
: P

S
M

Te
st

 P
ro

gr
es

s

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 27

 J
an

17
 F

eb
9

M
ar

30
 M

ar
20

 A
pr

D
at

e

Number of Requirements

P
la

n
A

ct
ua

l

D
at

a
as

 o
f 3

0
M

ar
 9

6
P

ro
gr

am
: P

S
M

Figure 4-3. Readiness for Delivery

Part 3 - Analysis Techniques and Examples

Page 242

4.4 MAINTENANCE ANALYSIS

Description Systems maintenance issues are often very different than issues related
to new software development. Figure 4-4 provides a sample set of
common indicators which might be monitored on a regular basis for a
system which has recently entered into the software support phase.
The sample system is currently on a three month release cycle. The
system has undergone three releases so far this year. Work on a fourth
release is currently in progress.

Basic Analysis Requirements stability (a) provides an indication of how the planned
content of each release was affected by changing requirements prior to
installation. (Maintenance requirements are approved change
requests.) Unplanned changes in release content can cause delays
because work effort is often expended making changes to one set of
requirements (i.e., approved change requests), then those requirements
are set aside in order to work on higher priority requests in the release.
This is what happened during the May release. It shows a large number
of changed requirements were associated with Release 2.

The size of the “backlog” of approved, pending change requests can be
seen by looking at the descending line at the top of the changes
implemented graph (b). Only a few additional change requests have
been introduced in the last 10 months, and the backlog of changes is
being gradually reduced. The chart indicates that, after each release has
been implemented, the problem reports addressed in the release are
closed and removed from the backlog.

A third chart (c) tracks software reliability. It is calculated by dividing
the number of failures reported by the actual hours of usage between
releases. The increase in the failure interval associated with Release 2
is probably related to the volatility of Release 2’s content. Releases 1
and 3 have exhibited a failure interval acceptably below the desired
target rate.

Finally, milestone progress (d) shows that Release 2 took longer than
planned and that Release 4 is behind schedule. The delay for Release 2
was probably due to the large number of changes made in that release.
The reason for Release 4’s delay is most likely due, again, to changes in
release content (see chart a). If this trend continues and is determined
to be a problem, the process for release content planning should be
reviewed.

Part 3 - Analysis Techniques and Examples

Page 243

a)
b

)

c)
d

)

R
eq

ui
re

m
en

ts
 S

ta
bi

lit
y

B
y

Ty
pe

 o
f C

ha
ng

e

-5
0050

Ja
n

Fe
b

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

D
at

e

Number of Requirements

A
dd

ed
M

od
ifi

ed
D

el
et

ed

R
el

ea
se

 4

R
el

ea
se

 1

R
el

ea
se

 2

R
el

ea
se

 3

D
at

a
as

 o
f 1

5
O

ct
 9

7
P

ro
gr

am
: P

S
M

C
ha

ng
es

 Im
pl

em
en

te
d

010203040506070

Ja
n

Fe
b

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

D
at

e

Change Requests

A
ct

ua
l C

lo
su

re
O

pe
n

R
el

ea
se

 1

R
el

ea
se

 2

R
el

ea
se

 3

D
at

a
as

 o
f 1

5
O

ct
 9

7
P

ro
gr

am
: P

S
M

S
of

tw
ar

e
R

el
ia

bi
lit

y

02468101214

Ja
n

Fe
b

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

D
at

e

Failures per 1000 Hours

R
el

ea
se

 1
R

el
ea

se
 2

R
el

ea
se

 4
R

el
ea

se
 3

Ta
rg

et

D
at

a
as

 o
f 1

5
O

ct
 9

7
P

ro
gr

am
: P

S
M

M
ile

st
on

e
P

ro
gr

es
s

M
ai

nt
en

an
ce

 A
ct

iv
iti

es

Ja
n

Fe
b

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

R
el

ea
se

 1
 -

P
la

n

R
el

ea
se

 1
 -

A
ct

ua
l

R
el

ea
se

 2
 -

P
la

n

R
el

ea
se

 2
 -

A
ct

ua
l

R
el

ea
se

 3
 -

P
la

n

R
el

ea
se

 3
 -

A
ct

ua
l

R
el

ea
se

 4
 -

P
la

n

R
el

ea
se

 4
 -

To
 D

at
e

D
at

e
D

at
a

as
 o

f 1
5

O
ct

 9
7

P
ro

gr
am

: P
S

M

Figure 4-4. Maintenance

Part 3 - Analysis Techniques and Examples

Page 244

Action

Issues

Measures

Indicators

Analysis

Information

P RACTICAL
 S OFTWARE
 M EASUREMENT

ACQUISITION AND
CONTRACT
IMPLEMENTATION
GUIDANCE
PART 4

Part 4 - Acquisition and Contract Implementation Guidance

Page 246

Part 4 - Acquisition and Contract Implementation Guidance

Page 247

ACQUISITION AND CONTRACT IMPLEMENTATION
GUIDANCE

The measurement tailoring process described in Part 1 applies to
all programs, whether the software is developed organically or
acquired through an external agreement. The first two activities of
the tailoring process result in a specification of the program
manager’s measurement requirements (see Part 2 for details). The
last activity in the tailoring process integrates that specification
into the developer’s process.

For programs where the developer is organic, the measurement
requirements can be conveyed and negotiated informally.
However, when the software is being acquired from an external
source, the interface between the program manager and the
developer must be managed more formally. This part of the Guide
explains how measurement is implemented via a contract between
a government organization and a private contractor. These
concepts also apply to situations in which software is acquired
from another government organization via a Memorandum of
Understanding/ Agreement (MOU/MOA) or Inter-Service Support
Agreement (ISSA).

This part of the Guide is organized into three chapters:

• Chapter 1, Contract Implementation Guidance, describes
the activities by which the program manager’s
measurement requirements are integrated with the
developer’s software process.

• Chapter 2, Sample RFP Wording, contains sample wording
that may be inserted into a Request For Proposal (RFP) or
Contract along with the rationale for each contract
requirement.

• Chapter 3, Additional Sample Material, contains sample
WBS structures for both Weapons and AIS systems in
addition to a draft outline for a software measurement
plan.

Part 4 - Acquisition and Contract Implementation Guidance

Page 248

Part 4 - Acquisition and Contract Implementation Guidance

Page 249

TABLE OF CONTENTS

CHAPTER 1 – CONTRACT IMPLEMENTATION GUIDANCE................................ .251
1.1 Contract Planning and Preparation..251

1.2 Proposal Evaluation...251

1.3 Negotiations...252

1.4 Contract Modifications..253

CHAPTER 2 – SAMPLE RFP WORDING................................255

CHAPTER 3 – ADDITIONAL SAMPLE MATERIAL................................ 261

Part 4 - Acquisition and Contract Implementation Guidance

Page 250

Part 4 - Acquisition and Contract Implementation Guidance

Page 251

CHAPTER 1 – CONTRACT IMPLEMENTATION GUIDANCE

Through the contracting process, the program management team
ensures that the selected developer provides the measurement data
necessary to manage the program effectively. This chapter
identifies the measurement considerations to be observed in each of
the four steps of the contracting process: contract planning and
preparation, proposal evaluation, negotiations, and contract
modifications.

This contracting process is applicable to programs in both the
development and software support phases, although the issues and
the selected measures may be different. When adding measures to
an existing contract, the contract planning and preparation and
proposal evaluation steps are generally not implemented.

1.1 CONTRACT PLANNING AND PREPARATION

During Contract Planning and Preparation, software measurement
requirements are identified and documented. These requirements
are defined using the process described in Part 2 of the Guide. The
RFP provides a vehicle for communicating these requirements to
potential contractors. Chapter 2 contains sample wording that may
be inserted into a RFP for this purpose. In the RFP, the program
management team also requests historical data necessary to
substantiate the developer’s proposal and to conduct an
independent feasibility analysis of the proposed software plan.
Chapter 2 also provides wording for this. In parallel with RFP
development, the program management team will develop
independent estimates of size, schedule, effort and cost to use in
evaluating the contractors’ proposals.

1.2 PROPOSAL EVALUATION

Contractors respond to the RFP with a proposal explaining how
their measurement process will meet the program manager’s
information needs. Each prospective contractor’s proposed
measurement process must be evaluated as part of the overall

Part 4 - Acquisition and Contract Implementation Guidance

Page 252

proposal evaluation process. This evaluation includes an assessment
of the developer’s understanding of the issues specified in the
contract, as well as the effectiveness of the process and measures
that the developer is planning to use to address the issues. The
evaluation should assess the adequacy of proposed measurement
data definitions and methodologies. An on-site evaluation at each
developer’s facility may be performed to validate the proposed
measurement process identified in each proposal.

The proposal evaluation team also needs to assess the feasibility of
each proposed developer’s estimates with respect to size, schedule,
effort, and cost. The team may use software development cost and
schedule estimating models to compute performance parameters
and look for inconsistencies that need to be reconciled. In addition,
the developer’s estimates should be compared to the independent
estimates done by the program office. Feasibility is also evaluated
with respect to the historical data provided.

1.3 NEGOTIATIONS

Once a developer has been selected, the negotiator begins the task
of finalizing the measurement requirements in the contract. In the
proposal, the developer should have identified any concerns with
the specified issues and measures and proposed alternatives as
appropriate. Alternative measures must adequately address the
identified issues and be used internally to manage the software
development.

The developer should identify any problems associated with the
specification guidance including the data items to be collected, the
collection and reporting levels, and the method for counting actuals.
The developer should describe his proposed implementation of the
measures, including definitions, estimation and actual measurement
methodologies, and data reporting mechanisms. All of these items
must be agreed upon during negotiations. The results of the
negotiations should be documented in the contract or in an
approved software measurement plan.

Part 4 - Acquisition and Contract Implementation Guidance

Page 253

1.4 CONTRACT MODIFICATIONS

It is important to understand that the software issues will change
during the program, and the measurement and contracting process
has to be flexible enough to accommodate these changes. Different
measures may be required to address new or modified issues.
Changes may be required to specifications of existing measures such
as data definitions, data elements, or reporting mechanisms.

Contract modifications may also be necessary to implement
measurement requirements for existing programs that did not
originally require measurement. Even in these situations, the
program management team should still go through the process of
defining program issues and measurement requirements. The team
should work with the existing developer to determine if any
measures are already available that address these issues. The
developer may already be collecting some useful measures.

Part 4 - Acquisition and Contract Implementation Guidance

Page 254

Part 4 - Acquisition and Contract Implementation Guidance

Page 255

CHAPTER 2– SAMPLE RFP WORDING

This chapter contains sample wording that may be inserted into a
RFP, contract or other agreement between the program manager
and developer. The first section, Contract Management, contains
sample wording that may be used to request software
measurement data, address questions about that data, and obtain a
software measurement plan.

Each of the following sections contain a description of the
rationale for each request, followed by sample wording that may be
directly inserted into an agreement. The sample wording is in
quotes in the shaded area.

Requirements for Software Measures

Contract wording to require the collection of measurement data
should be specified. In the RFP, the program management team
should detail the software issues identified and the measures
required to address them. For each measure required, the program
management team should identify the specification guidance
including the data items to be collected, the collection and reporting
level, and the method for counting actuals as complete. The
following paragraph specifies monthly reporting, but this may be
adjusted as appropriate for your program.

“The developer shall provide the software measures specified in
Paragraph XXX on a monthly basis. For each measure, data shall
be provided for each data item at the specified collection level.
Data shall not be considered as actuals until the criteria for
counting actuals has been successfully met.”

Requirements for most software measures should include both
planned and actual performance data. Any changes to the planning
data should be identified, quantified, and provided to the program
manager. A few measures may not be accompanied by planning
data (such as defect and requirements stability data).

“For all the measures specified in Paragraph XXX, the developer
shall provide an initial plan and periodic actual data. Any time

Part 4 - Acquisition and Contract Implementation Guidance

Page 256

that the planning data for any of the detailed measurement
parameters changes, the developer shall provide an updated plan
within 30 days of the change.”

For each measure, the developer should propose measurement
definitions, methodologies, and data reporting mechanisms.

“For each measure specified in Paragraph XXX, the developer
shall provide a measurement definition, an estimation
methodology, the method used to measure actual data, and the
data reporting format and associated mechanism. This
information shall include a description of any tools utilized.”

Planned and actual data shall be based on the same measurement
methodology. Any changes in definitions, estimation
methodologies, or actual measurement approaches shall be
documented within 30 days of the change and shall require
approval of the program manager.”

The data should be provided in a timely manner, as soon as possible
after data collection occurs (the wording recommends within 30
days - you may want to modify this time period). The lag time
between data collection and reporting should be minimized so that
early warning indicators are available early.

“The required measures shall be delivered within 30 days after the
data is collected.”

Developer Access

Throughout the development, the program management team
should periodically review the measurement processes. In addition,
the measurement analyst will have questions about some of the
data. The measurement analyst needs to have access to the
developer to answer these questions and to gather the subjective
data that supports the proper interpretation of the quantitative data.

“The developer shall provide direct access to the program team to
facilitate open communications with respect to the measurement
process. The developer shall also provide explanations and
rationale for changes, answer questions, and provide clarifications
regarding the measurement process and associated data and
information.”

Part 4 - Acquisition and Contract Implementation Guidance

Page 257

Data Alternatives

The measures specified in the RFP represent the needs of the
Program Manager. The developer may request the substitution of
an alternate software measure, if the alternative measure provides
similar insight into the associated software issue. The alternative
measure should be readily available from the developer’s
development process and should be used internally by the
developer.

“In the event that a specified measure is unavailable, the
developer shall submit a request for substitution. This request
shall identify an alternative measure with a data definition,
rationale for the change, a description of how this measure
addresses the identified issue, and a description of how this
measure will be used internally. The alternative measure must be
readily available from the software development process.”

Draft Measurement Plan

The developer should be required to develop a measurement plan
which specifies which issues and measures will be addressed during
the program. The plan should identify the software measurement
process to be used and specify how the developer will use the
measurement information. Chapter 3 contains a sample outline of a
software measurement plan

“The developer shall submit a draft measurement plan which
specifies the issues to be addressed, the measures to be utilized,
and definitions of specified measures and measurement
methodologies. This plan shall identify the measurement approach
to be utilized including a description of how measurement
information will be utilized in the developer’s internal management
of this program, how data will be collected and utilized, points of
contact, responsibilities, and organization communications and
interfaces.”

Proposal Evaluation Data

Proposal evaluation should include an assessment of the feasibility
of the software development plan based on information provided in
the proposal, historical data about the developer’s performance, and

Part 4 - Acquisition and Contract Implementation Guidance

Page 258

independent estimates prepared by the program management team.
Information used for this assessment includes:

• Required Productivity - The developer should provide an
assessment of the productivity required to successfully execute
the proposal, based on the planning parameters provided in the
proposal. The developer should include a definition of any tools
or methodologies used.

• Product Size, Effort Allocation, Milestone Dates - The
developer should submit estimated data for each of these
measures. This allows the proposal evaluation team to do an
independent feasibility assessment on each bidder. The data
should include a data definition and estimation methodology.

• Historical Data - The developer should submit actual data
(product size, effort allocation, milestone dates, cost profile,
and productivity) from completed programs. Data should be
collected from programs that are similar in domain, size, and
complexity to the proposed program.

The first two items usually are required parts of the proposal,
whether or not the measurement approach described in this Guide is
applied. The following RFP wording is suggested to collect
historical data to substantiate the potential developer’s proposal and
to conduct the feasibility analysis:

“The developer shall provide historical data from at least three
completed programs to support the proposal. The technical
characteristics of the historical programs shall be similar to the
proposed system with respect to domain, size, and complexity. If
the developer does not have experience within these criteria, data
from other completed programs shall be provided. The data shall
include measures of size, schedule, effort, cost, and productivity by
WBS element. Any models and methodologies used shall be
documented for each historical program to a sufficient level of
detail to allow replication by the evaluation team.”

Part 4 - Acquisition and Contract Implementation Guidance

Page 259

Part 4 - Acquisition and Contract Implementation Guidance

Page 260

Part 4 - Acquisition and Contract Implementation Guidance

Page 261

CHAPTER 3 – ADDITIONAL SAMPLE MATERIAL

Two items that are important to implementing an effective
measurement process are the WBS and the measurement plan. This
chapter contains examples of a weapons system WBS, automated
information system WBS, and software measurement plan outline.

Figure 3-1 contains a sample WBS that can be used in a weapons
software development. Once the developer is selected, it is
important to modify the WBS used during the selection process to
map to the developer’s negotiated WBS. The revised WBS
provides a tie between the estimated measures and the actual
measures. It also insures that the cost account elements map to the
same WBS that is used for data collection. Figure 3-2 contains a
sample WBS that can be used in a AIS software development.

Figure 3-3 contains a sample outline of a Software Measurement
Plan. This plan should be modified as needed to accommodate
different program information needs and developer processes. It
may be included in the Software Development Plan (SDP),
Software Maintenance Plan (SMP), Computer Resource Life Cycle
Management Plan (CRLCMP), or similar planning document.

Part 4 - Acquisition and Contract Implementation Guidance

Page 262

P
ro

je
ct

 P
la

nn
in

g
&

 O
ve

rs
ig

ht

E
st

ab
lis

hi
ng

 a
 S

W

D
ev

el
op

m
en

t
E

nv
iro

nm
en

t

P
rim

e
M

is
si

on

P
ro

du
ct

 (P
M

P
)

S
ys

te
m

P
M

P

S
ys

te
m

E

ng
in

ee
rin

g

P
M

P
 H

ar
dw

ar
e

S
ub

sy
st

em
 1

..n

(S
pe

ci
fy

 N
am

e)

S
ys

te
m

 R
eq

s.

A
na

ly
si

s

S
ys

te
m

 D
es

ig
n

B
ui

ld
 1

..n

(S
pe

ci
fy

 N
am

e)

P
re

pa
rin

g
Fo

r
S

of
tw

ar
e

U
se

P
re

pa
rin

g
Fo

r
S

of
tw

ar
e

Tr
an

si
tio

n

In
te

gr
al

P

ro
ce

ss
es

P
M

P
 A

pp
lic

at
io

ns

S
W

 S
ub

sy
st

em
 1

..n

(S
pe

ci
fy

 N
am

e)

P
M

P
 S

ys
te

m
s

S
W

S

ub
sy

st
em

 1
..n

(S

pe
ci

fy
 N

am
es

)

C
S

C
I/H

W
C

I
In

te
gr

at
io

n
&

Te

st
in

g

S
ys

te
m

Q

ua
lif

ic
at

io
n

Te
st

in
g

B
ui

ld
 1

..n

(S
pe

ci
fy

 N
am

e)

S
of

tw
ar

e
C

on
fig

ur
at

io
n

M
an

ag
em

en
t

S
of

tw
ar

e
P

ro
du

ct

E
va

lu
at

io
n

S
of

tw
ar

e
Q

ua
lit

y
A

ss
ur

an
ce

C
or

re
ct

iv
e

A
ct

io
n

(P
ro

bl
em

 R
pt

s)

Jo
in

t T
ec

hn
ic

al
 &

M

gm
t.

R
ev

ie
w

s

O
th

er

A
ct

iv
iti

es

P
ec

ul
ia

r
S

up
po

rt
E

qu
ip

m
en

t

Te
st

 &

M
ea

su
re

m
en

t
E

qu
ip

m
en

t

S
up

po
rt

&

H
an

dl
in

g
E

qu
ip

m
en

t

C
om

m
on

S

up
po

rt
E

qu
ip

m
en

t

Te
st

 &

M
ea

su
re

m
en

t
E

qu
ip

m
en

t

S
up

po
rt

&

H
an

dl
in

g
E

qu
ip

m
en

t

O
pe

ra
tio

na
l S

ite

A
ct

iv
at

io
n

S
ys

te
m

 A
ss

y.
,

In
st

al
la

tio
n

&

C
he

ck
ou

t

C
on

tra
ct

or

Te
ch

ni
ca

l
S

up
po

rt

S
ite

C

on
st

ru
ct

io
n

S
ite

/S
hi

p/

V
eh

ic
le

C

on
ve

rs
at

io
n

In
du

st
ria

l
Fa

ci
lit

ie
s

C
on

st
ru

ct
io

n
C

on
ve

rs
io

n/

E
xp

an
si

on

E
qu

ip
m

en
t

A
cq

ui
si

tio
n

or

M
od

er
ni

za
tio

n

M
ai

nt
en

an
ce

(In

du
st

ria
l

Fa
ci

lit
ie

s)

In
iti

al
 S

pa
re

s
&

 R
ep

ai
r P

ar
ts

C
S

C
I

1.
.n

(S

pe
ci

fy
 N

am
es

)

S
of

tw
ar

e
Im

pl
em

en
ta

tio
n

an
d

U
ni

t T
es

tin
g

S
of

tw
ar

e
R

eq
ui

re
m

en
ts

A

na
ly

si
s

S
of

tw
ar

e
D

es
ig

n

C
S

C
I

1.
.n

(S

pe
ci

fy
 N

am
es

)

S
of

tw
ar

e
R

eq
ui

re
m

en
ts

A

na
ly

si
s

S
of

tw
ar

e
D

es
ig

n

S
of

tw
ar

e
Im

pl
em

en
ta

tio
n

an
d

U
ni

t T
es

tin
g

R
ew

or
k

Figure 3-1. Sample WBS for Weapon System

Part 4 - Acquisition and Contract Implementation Guidance

Page 263

S
ys

te
m

 O
pe

ra
tio

n
an

d
S

up
po

rt

E
ng

in
ee

rin
g

A
na

ly
si

s
&

S

pe
ci

fi-

ca
tio

ns

 C
on

ce
pt

E

xp
lo

ra
tio

n
H

ar
dw

ar
e

 C
on

ce
pt

E

xp
lo

ra
tio

n
S

of
tw

ar
e

 C
on

ce
pt

E

xp
lo

ra
tio

n

D
at

a
 E

xp
lo

ra
tio

n
D

oc
um

en
-

ta
tio

n
 C

on
ce

pt

E
xp

lo
ra

tio
n

Te
st

in
g

 Fa
ci

lit
ie

s
 O

th
er

In
ve

st
m

en
t

P
ro

gr
am

M

gt
.

C
on

ce
pt

E

xp
lo

ra
tio

n
S

ys
te

m

D
ev

el
.

S
ys

te
m

P

ro
cu

re
-

m
en

t

O
ut

so
ur

ce
/

C
en

tra
l/

M
eg

aC
en

te
r

In
ve

st
m

en
t

S
ys

te
m

,
In

iti
at

io
n,

Im

pl
em

en
-

ta
tio

n,
 a

nd

Fi
el

di
ng

U
pg

ra
de

/
P

re
pl

an
ne

d
P

ro
du

ct

Im
pr

ov
em

en
t

D
is

po
sa

l/
R

eu
se

S
ys

te
m

D

ev
el

op
-

m
en

t
 D

ev
el

op
-

m
en

t,
P

ro
to

ty
pe

,
an

d
Te

st

S
ite

H

ar
dw

ar
e

S
of

tw
ar

e
D

ev
el

op
-

m
en

t
 S

ys
te

m

D
oc

um
en

t-
at

io
n

 D
at

a
D

ev
el

.
an

d
Tr

an
si

-
tio

n
 D

at
ab

as
e

S
ta

nd
ar

ds
/

D
ic

tio
na

ry

 D
ev

el
op

m
en

t
Tr

ai
ni

ng

 Te
st

 &

E
va

lu
at

io
n

 D
ev

el
.

Lo
gi

st
ic

al

S
up

po
rt

 Fa
ci

lit
ie

s
 E

nv
iro

nm
en

ta
l

 O
th

er

D
ev

el
op

m
en

t

D
ev

el
. H

W

 S
ys

. D
ep

lo
y-

m
en

t S
W

(n

on
-D

ev
.)

 In
iti

al

D
oc

um
en

t-
at

io
n

R
eq

ui
re

-
m

en
ts

 Lo

gi
st

ic
s

S
up

po
rt

E

qu
ip

m
en

t
 In

iti
al

S

pa
re

s
 W

ar
ra

nt
ie

s

C
ap

ita
l

In
ve

st
m

en
t

 S
W

 D
ev

el
-

op
m

en
t

 S
ys

te
m

U

se
r

In
ve

st
m

en
t

S
ys

te
m

In

te
gr

at
io

n,

Te
st

 a
nd

A

cc
ep

ta
nc

e
 C

om
m

on

S
up

po
rt

E
qu

ip
m

en
t

 S
ite

 A
ct

-
iv

at
io

n
an

d

fa
ci

lit
ie

s
P

re
pa

ra
tio

n
 In

iti
al

S

up
pl

ie
s

 E
ng

in
ee

rin
g

C
ha

ng
es

 In

iti
al

Lo

gi
st

ic
s

S
up

po
rt

 O
ffi

ce

Fu
rn

itu
re

 a
nd

G

en
er

al

S
up

po
rt

Fu
rn

itu
re

 D

at
a

U
pl

oa
d

an
d

Tr

an
si

tio
n

 B
as

e/

In
st

al
la

tio
n

C
om

m
un

i-
ca

tio
ns

 O

th
er

U
pg

ra
de

D

ev
el

op
-

m
en

t
 Li

fe
 C

yc
le

s
U

pg
ra

de
s

P
ro

cu
re

m
en

t

C
ap

ita
l

R
ec

ou
p-

m

en
t

 R
et

ire
m

en
t

 E
nv

iro
n-

m

en
ta

l/
H

az
ar

do
us

D

is
po

sa
l

S
ys

te
m

/
M

at
er

ia
l

Ite
m

/
M

an
ag

em
en

t

A
nn

ua
l

O
pe

ra
tio

ns

In
ve

st
m

en
t

H
ar

dw
ar

e
M

ai
nt

en
an

ce
S

of
tw

ar
e

M
ai

nt
en

an
ce

M
eg

aC
en

te
r

O
pe

ra
tio

ns

an
d

M

ai
nt

en
an

ce

S
up

po
rt

D
at

a
M

ai
nt

en
an

ce
U

ni
t/S

ite

O
pe

ra
tio

ns

E
nv

iro
nm

en
ta

l
an

d

H
az

ar
do

us

M
at

er
ia

l
S

to
ra

ge
 a

nd

H
an

dl
in

g

C
on

tra
ct

Le

as
in

g

A
nn

ua
l

S
ys

te
m

M

ai
nt

en
an

ce

In
ve

st
m

en
t

 R
ep

le
ni

sh
-

m
en

t
S

pa
re

s
 R

ep
le

ni
sh

-
m

en
t

S
up

pl
ie

s

an
d

C
on

su
m

ab
le

s

O
rg

an
ic

H

ar
dw

ar
e

M
ai

nt
en

an
ce

 C

on
tra

ct

M
ai

nt
en

an
ce

S

up
po

rt
 O

th
er

C
om

m
er

-
ci

al
-o

ff-
th

e-
S

he
lf

(C
O

TS
)

 A
pp

lic
at

io
ns

/
M

is
si

on

S
of

tw
ar

e

(n
on

-C
O

TS
)

 C
om

m
un

i-
ca

tio
ns

S

of
tw

ar
e

(n
on

-C
O

TS
)

 D
at

a
C

en
te

r
S

of
tw

ar
e

 O
th

er

S
of

tw
ar

e

M
is

si
on

A

pp
lic

at
io

n
D

at
a

 S
ta

nd
ar

d
A

dm
in

is
-

tra
tiv

e
D

at
a

S
ys

te
m

O

pe
ra

tio
n

P
er

so
nn

el

 U
til

ity

R
eq

ui
re

m
en

ts

 Fu
el

 a
nd

P

O
L

 Fa
ci

lit
ie

s
Le

as
e

an
d

M
ai

nt
en

an
ce

 C

om
m

un
ic

at
io

ns

 B
as

e
O

pe
ra

tin
g

S
up

po
rt

 R
ec

ur
rin

g
Tr

ai
ni

ng

 M
is

ce
lla

ne
ou

s
Tr

ai
ni

ng

S
ys

te
m

Figure 3-2. Sample WBS for AIS System

Part 4 - Acquisition and Contract Implementation Guidance

Page 264

Software Measurement Plan

Part 1 - Introduction
- Purpose
- Scope

Part 2 - Program Description
- Software Technical Characteristics
- Software Done at beginning, updated when changes occur

Part 3 - Measurement Approach
- How measurement is integrated into the software technical and

management processes
- How data will be collected and used
- Measurement Points of Contact (Developer, Subcontractors)
- Measurement Responsibilities
- Organizational communications and interfaces

Part 4 - Description of Program Software Issues
- Identification and prioritization of software issues, risks, and

objectives

Part 5 - Software Measures and Specifications
- Include for each selected measure (for each developer if

different)
a. Measure name
b. Data items to be collected
c. Collection level
d. Reporting level
e. Criteria for Counting Actuals
f. Data definitions
g. Estimation methodology
h. Collection and reporting mechanisms
i. Source of data
j. Collection periodicity

Part 6 - Measurement Data Aggregation Structures
- Component Data Aggregation Structure (e.g. CSCIs, units)
- Software Activity Aggregation Structure (e.g. activity,

organization)

Figure 3-3. Sample Outline for Software Management Plan

Action

Issues

Measures

Indicators

Analysis

Information

P RACTICAL
 S OFTWARE
 M EASUREMENT

SOFTWARE
MEASUREMENT
CASE STUDIES
PART 5

Part 5 - Software Measurement Case Studies

Page 266

Part 5 - Software Measurement Case Studies

Page 267

MEASUREMENT CASE STUDIES

Practical Software Measurement was developed to show how
measurement can be used to address the software issues faced by
today’s DoD Program Manager. To better illustrate how the
measurement process is implemented for different types of
programs, this part of the Guide contains two software
measurement case studies. The first (Part 5A) is based upon a
major shipboard Weapons System development. The second (Part
5B) is based on the development of an Automated Information
System designed to manage military personnel information. These
case studies describe how the measurement process is tailored and
applied to meet specific, and sometimes unique, program
management requirements.

The PSM case studies address the issues and challenges that most
DoD program managers face in planning and implementing
software intensive development programs. The case studies
concentrate on the issues the program manager must address with
respect to managing the program within defined acquisition and
technical constraints. They show how measurement is used to help
make decisions concerning these issues. The case studies also
illustrate how any DoD software development program can benefit
from implementing a tailored set of software measures within an
effective measurement process.

Although the Practical Software Measurement case study
parameters are based on actual DoD program characteristics, the
program scenarios, including the described system architectures,
program names, and program organizations, are fictitious.

Part 5 - Software Measurement Case Studies

Page 268

Part 5 - Software Measurement Case Studies

Page 269

WEAPONS SYSTEM CASE STUDY................................ 271

CHAPTER 1 - PROGRAM OVERVIEW................................ 275
1.1 Introduction..275

1.2 Program Technical Approach..277
1.2.1 System Requirements Definition and Design Analysis..277

1.2.2 DDG 51 C4I Baseline System Description..278
1.2.3 System Requirements and Design Recommendations..280

1.3 Program Management Approach...281

CHAPTER 2 - PROGRAM PLANNING AND ACQUISITION............................ 284
2.1 Software Program Planning...284

2.2 Software Acquisition...287
2.2.1 Request for Proposal...287
2.2.2 Proposal Evaluation..288
2.2.3 Award..290
2.2.4 Negotiations...292

CHAPTER 3 - DEVELOPMENT PHASE................................ 296
3.1 Tracking Development Performance...296

3.1.1 Software Measurement Overview..296
3.1.2 Software Issue Identification and Analysis..297
3.2 Revising The Development Plan..306

3.3 Software Delivery...308

3.4 Epilogue...309

AUTOMATED INFORMATION SYSTEM CASE STUDY................................ ..312

CHAPTER 1 - PROGRAM OVERVIEW................................ 317
1.1 Introduction..317

1.2 Air Force Business Process Modernization Initiative..319

1.3 Program Description...320

1.4 System Architecture and Functionality..322
1.4.1 Current Personnel System...322
1.4.2 Military Automated Personnel System (MAPS)..323

CHAPTER 2 - GETTING THE PROGRAM UNDER CONTROL...................... 327
2.1 Evaluating the Software Development Plan...327

2.2 Revising the Software Development Plan...330

Part 5 - Software Measurement Case Studies

Page 270

2.3 Tracking Performance Against the Revised Plan..334

CHAPTER 3 - EVALUATING READINESS FOR DELIVERY........................... 341
3.1 Increment 1...341

3.2 Increment 2...345

CHAPTER 4 - INSTALLATION AND SOFTWARE SUPPORT........................ 349
4.1 Increment 1 Installation...349

4.2 Software Support..350

4.3 Epilogue...353

Part 5 - Software Measurement Case Studies

Page 271

WEAPONS SYSTEM CASE
STUDY

PART 5A

Part 5 - Software Measurement Case Studies

Page 272

Part 5 - Software Measurement Case Studies

Page 273

WEAPONS SYSTEM CASE STUDY

The Weapons System case study is based on the development of a
complex shipboard Weapons System designed to integrate multiple
platform target engagement and weapons management functions
into an existing system baseline. In this scenario, measurement is
used to help plan and track the software development effort from
the inception of the program through system deployment. The
development approach is based on the upgrade of an existing
system using Commercial Off the Shelf components and reused
software in a revised architecture. The developer is a
competitively selected contractor who works closely with the Navy
program manager to identify and resolve issues typical in a large
development program. These issues include software requirements
and size growth, incremental schedule slips, and overall software
development productivity shortfalls.

The Weapons System case study is organized into three chapters:

• Chapter 1, Program Overview, describes the technical
and management aspects of the software development
effort.

• Chapter 2, Program Planning and Acquisition, shows
how measurement can be used to define and evaluate a
realistic software development plan.

• Chapter 3, Software Development, illustrates how
measurement helps to identify and track software
issues, and how the program manager uses
measurement information to evaluate development
status and make informed program decisions.

Part 5 - Software Measurement Case Studies

Page 274

Part 5 - Software Measurement Case Studies

Page 275

CHAPTER 1 - PROGRAM OVERVIEW

This chapter introduces the example Navy program and describes
the technical and management aspects of the development effort.
The program scenario is based on a major program upgrade to an
existing Navy surface ship Command, Control, Communications,
Computer, and Intelligence (C4I) system. The upgrade integrates
multiple platform target engagement and weapons management
functions into an existing software functional baseline. It includes
the addition of new software functions to the system, as well as
modifications to the existing software baseline.

Although the case study parameters are based on actual Navy
surface ship characteristics, the program scenario-including the
described system architecture, program names and organizations-
is fictitious.

1.1 INTRODUCTION

In the early 1990’s, the Navy began to recognize a growing need
for its ships and aircraft to operate interactively in a multiple threat
environment. This need was clearly demonstrated during the Gulf
War where well coordinated engagements, which integrated the
capabilities of a number of different platforms, provided significant
tactical advantages.

To define its changing mission requirements, the Navy initiated a
concept study to determine the feasibility and effectiveness of
integrating a multiple platform target engagement capability into
the fleet. The results of the study, completed in 1994, validated the
need for the proposed engagement capabilities and recommended
an implementation approach which built upon the Navy’s existing
C4I tactical systems on various platforms. The study recommended
that the Navy initially focus on the upgrade of its existing surface
combatants with new communications, engagement management,
and weapons control functions. These new functions would be
designed to allow two or more ships to engage the enemy as a
single entity. With the new capabilities, one ship would be able to
manage the overall sensor and target scenarios for the entire group

Part 5 - Software Measurement Case Studies

Page 276

and assign, launch, and control the weapons on the other ships
using advanced tactical communications links.

The Navy decided that the Arleigh Burke DDG 51 class of guided
missile destroyers (DDG) would be the first ships to receive the
capability upgrade, as it was the largest and most modern class of
DDGs in the fleet. It named the program the DDG 51 Surface
Ship Concurrent Weapons Engagement Upgrade Program, or
DDG 51 SCWE for short. The objective of the DDG 51 SCWE
program was to define, develop and integrate a new concurrent
weapons engagement function into the existing C4I system on the
Arleigh Burke DDGs. Most of the efforts were to be focused on
the coordinated employment of long-range surface-launched
weapons, with an emphasis on the Tomahawk Cruise Missile.

The DDG 51 SCWE program was projected to require significant
changes in the architecture of the existing DDG 51 C4I system,
especially with respect to the software. Existing software functions
and interfaces required numerous changes, and the multiple
platform communications, target management, and weapons
management functions had to be developed and integrated. New
acquisition policies made the use of an Open Systems Architecture
(OSA) and Commercial-Off-The-Shelf (COTS) software
components almost mandatory, and the overall business
environment required that the program be well managed in terms of
delivered functionality, and in meeting pre-defined cost and
schedule objectives.

The Navy recognized the critical nature of the software
development component of the DDG 51 Surface Ship Concurrent
Weapons Engagement Upgrade Program and emphasized the need
for effective software management as part of the overall program
management approach. Understanding this need, the Naval Sea
Systems Command (NAVSEA) assigned Captain Katherine
McLain, USN, as the Program Manager. Captain McLain held an
advanced degree in Electrical Engineering from Stanford
University, and she had served as the software technical manager
on a number of previously successful Navy development programs.
After completing the Program Manager’s course at the Defense
Systems Management College (DSMC), Captain McLain assembled
her program management team at NAVSEA. Her office was
designated as PMO-551. The award date for DDG 51 SCWE
Engineering and Manufacturing Development (E&MD) was

Part 5 - Software Measurement Case Studies

Page 277

projected for mid 1996. To ensure a successful program, a
considerable amount of work had to be completed before award.

1.2 PROGRAM TECHNICAL APPROACH

1.2.1 System Requirements Definition and Design Analysis

Based on her previous experience, Captain McLain was familiar
with the software architecture and capabilities of the existing DDG
51 C4I system. Like most of the large Navy systems developed in
the late 1980’s, the system on the Arleigh Burke DDG class was
built around the AN/UYK-43 Navy standard computer, which
centrally handled the processing for most of the system’s different
functions. The original C4I systems on the DDG 51’s had been
incrementally upgraded since they were first deployed to integrate
new sensor and weapons capabilities. Over time, the system design
had proven to be effective and reliable.

The software for the DDG 51 C4I system was implemented largely
in CMS-2, the Navy’s pre-Ada standard high order programming
language. The functions where real-time processing and timing
considerations were critical were coded in assembly language. The
original software had been developed using a modified DoD-STD-
2167 software development process and was currently being
maintained by the original developer under a separate maintenance
contract.

The mission requirements driving the DDG 51 SCWE program
provided some significant technical and program management
challenges for PMO-551. Captain McLain felt that one of the keys
to a successful development program was a well defined set of
system requirements. As part of her acquisition strategy, PMO-551
awarded a series of competitive System Requirements Definition-
Design Analysis Study Contracts. These design study contracts
were specifically implemented to accomplish the following:

• Provide a definitive analysis and characterization of the
existing DDG 51 C4I system hardware and software
architectures.

• Develop an approved set of system level requirements
for inclusion in the E&MD Request For Proposal (RFP).

Part 5 - Software Measurement Case Studies

Page 278

• Develop innovative system design alternatives. These
alternatives in particular were focused on the use of
COTS hardware and software components, and on the
integration of an OSA into the existing system to
support future capability growth.

1.2.2 DDG 51 C4I Baseline System Description

The results of the System Requirements Definition–Design Analysis
Study efforts provided a detailed characterization of the existing
DDG 51 C4I software architecture. Figure 1-1, a simplified
diagram, shows that the system consisted of six primary software
functions, all resident in the AN/UYK-43 computer. Functional
data interfaces to the External Communications subsystems, the
Weapons subsystems, and to own-ship sensors such as Navigation,
Radar, Sonar, and Electronic Support Measures (ESM), were
through the System Control software function using a Navy
Tactical Data System (NTDS) interface protocol. Two way data
communications to the Command Display and Control consoles
was also provided by the System Control software through an
NTDS interface.

Each of the six primary software functions in the system was
comprised of three to six Computer Software Configuration Items
(CSCIs), as defined in DoD-STD-2167. In all, there were 24 CSCIs
in the baseline system. The software architecture was well defined,
and the original developer had done an excellent job of allocating
and mapping the original software requirements to the CSCIs.
There was a full set of software technical specifications available,
but these had not been kept uniformly up to date, especially with
respect to the incremental design changes.

The DDG 51 C4I system software was relatively large and
somewhat complex. The various software functions worked
together to integrate real-time data from a variety of distinct
combat and ship control subsystems and processed the data into the
information needed to effectively engage enemy targets.

Part 5 - Software Measurement Case Studies

Page 279

Figure 1-1. DDG 51 Weapons System Software Architecture Baseline
System

Each of the six primary software functions addressed a unique set
of functional requirements:

• System Control - The System Control function
included the AN/UYK-43 operating system and
provided the primary software services functions for the
system. Its functions included system database
management, initial program load, configuration and
reconfiguration management, and display control.

• • Surface Control - The Surface Control function
addressed own-ship maneuvering and navigation
requirements and calculated ship’s heading, speed, and
position on a real-time basis. It also included capabilities
that helped position the ship with respect to other
surface contacts.

• • Target Tracking - The Target Tracking function
integrated and correlated all sensor data, and calculated,
evaluated, and tracked surface, subsurface, and air
contacts on a real-time basis.

• • Threat Evaluation - The Threat Evaluation function
correlated all of the sensor data from all targets and
through a series of complex threat algorithms calculated
and prioritized each target within an overall threat
profile.

Part 5 - Software Measurement Case Studies

Page 280

• Target Engagement - The Target Engagement
function included software that managed the overall
enemy engagement and controlled all weapons
allocations to individual targets. It also assigned
weapons presets based on the calculated target
parameters. This function was one of the most critical in
the system.

• • External Communications - The External
Communications function provided interfaces between
the C4I system and a number of tactical digital
communications data links. These data links provided
for the exchange of contact and targeting information
with other off-ship platforms.

Together, the DDG 51 C4I system software functions included over
one million logical lines of source code distributed among 24 CSCIs
as shown in Figure 1-2.

Figure 1-2. DDG 51 Baseline System Software Description

1.2.3 System Requirements and Design Recommendations

The System Requirements Definition-Design Analysis study effort
provided a definitive set of system level requirements for the DDG
51 SCWE upgrade program. After reviewing the requirements with
her staff, Captain McLain had a clear understanding of the
magnitude of the changes required for the existing DDG 51 C4I
system. She knew that the new multi-ship engagement functions
would have a significant impact on the existing system and software
architectures. She also estimated that the current software baseline
would more than double in size.

Part 5 - Software Measurement Case Studies

Page 281

In addition to the new multiple platform engagement management
and weapons control functions, the system level requirements
included the need for:

• New display processing capabilities.
• New assignable command and display workstations.
• Automatic reconfiguration of the engagement control

functions in the event of a platform specific failure.
• Enhanced weapons safety provisions.
• Advanced multiple ship and aircraft contact correlation.
• Additional secure digital data links.
• An increase in the overall system processing capacity.

Even at this point in the program, Captain McLain knew that
managing the requirements, especially those allocated to the
software, would be important to the success of the upgrade
program.

Given the large amount of functionality that was to be added to the
baseline DDG 51 system, the System Requirements Definition-
Design Analysis studies also proposed a number of system and
software design alternatives that addressed the Navy’s desire for
development affordability and lifecycle cost savings. These
alternatives were all based upon retaining a large part of the
baseline system hardware and software and adding the new
capabilities using COTS components integrated via an OSA local
area network. In all cases, the alternatives addressed the addition of
new processing and display capabilities using advanced display
workstations.

The design alternatives outlined in the study recommendations
maintained much of the integrity of the existing system hardware
and software. In addition, it addressed the Navy’s policy to
embrace open commercial interface standards and COTS products
in implementing the new functionality.

1.3 PROGRAM MANAGEMENT APPROACH

With the system specifications and the design studies completed,
Captain McLain began to concentrate on the program’s acquisition
requirements. With her own program office personnel, and support
from the Naval Surface Warfare Center (NSWC) in Dahlgren,

Part 5 - Software Measurement Case Studies

Page 282

Virginia, Captain McLain believed she had a very capable
acquisition team, especially with respect to software.

With the changes in the DoD business environment over the past
several years, Captain McLain knew that the DDG 51 SCWE
program would be very visible within the Navy and DoD. It was
one of the first major programs to fully address the DoD’s
acquisition reform requirements, which included the extensive use
of commercial product standards, COTS hardware and software,
software reuse, and the integration of a new OSA.

One of the key aspects of acquisition reform was its emphasis on
less developer oversight by the acquisition organization. This
requirement led to several very critical software decisions by
Captain McLain:

• The developer had to have a mature software
development process, and the developer’s overall
capability with respect to software process would be a
key consideration in source selection.

• Insight into the software processes and products, across
all activities and development phases, would be
provided by a practical software measurement process.
Both PMO-551 and the developer would use software
measurement to identify and manage the software
development issues.

• The government and developer organizations would
function as an integrated project team and communicate
on an objective basis.

• The software would be developed using a tailored MIL-
STD-498 development process. Along with this, a
detailed software Work Breakdown Structure (WBS)
would be implemented to manage the program’s
development products and activities.

Captain McLain planned to award the development contract to a
capable software developer with a proven history of success. She
made it clear that she expected both her PMO-551 organization and
the developer to address the software issues in an objective manner.
Captain McLain knew that delivering the specified requirements to
the fleet within the program’s schedule and funding constraints
would be a significant challenge.

Part 5 - Software Measurement Case Studies

Page 283

Part 5 - Software Measurement Case Studies

Page 284

CHAPTER 2 - PROGRAM PLANNING AND ACQUISITION

With the system requirements completed, PMO-551 began to focus
on the detailed planning for the DDG 51 Surface Ship Concurrent
Weapons Engagement Upgrade Program. Before awarding the
development contract, Captain McLain and the Navy program team
had to define a feasible software development plan, issue the
Request for Proposal (RFP) and evaluate the submitted proposals
during source selection. Even at this early planning stage, Captain
McLain used information derived from the software measurement
process to support her planning objectives.

This chapter of the case study shows how software measurement
can help during the Program Planning and Acquisition phase of
software development. The activities that take place during this
phase set the stage for project success or failure. Their
importance cannot be over-emphasized. It is during this time in the
program that the Program Manager implements the measurement
process as an integral part of the overall program management
structure. Software measurement is used to ensure that the
software development plan is realistic and the software developer
has the capability to successfully complete the job.

2.1 SOFTWARE PROGRAM PLANNING

The most important software planning task for Captain McLain and
her staff was to develop a realistic DDG 51 SCWE software
implementation plan. Aware of the direct relationships between the
overall size of the software and development cost and schedule,
Captain McLain and her software engineering team generated
independent estimates for the key parameters.

PMO-551 began with a preliminary allocation of the system
requirements to a notional set of software components, keeping in
mind that they would be retaining much of the existing software
and using a significant amount of COTS software to implement the
new functions. Based on these requirements, and the size of the
existing code, the team estimated the size of the software to be
developed. They generated estimates of development effort and

Part 5 - Software Measurement Case Studies

Page 285

schedule using two techniques. First, they had their own
engineering rules-of-thumb for development productivity (lines of
code per staff month) and code-production rates (lines of code per
calendar month). These rules-of-thumb were derived from their
past experiences with similar C4I programs. In both cases, these
engineering estimates encompassed the entire software
development cycle (from software requirements analysis through
system integration and test). Secondly, they used a commercially-
available software cost estimating model.

From these estimates, Captain McLain concluded that the schedule
required to realistically complete the software was between 74 and
78 months, starting with contract award and ending with
certification testing and delivery. Unfortunately, this time was
somewhat longer than the schedule the Navy defined. The ship
deployment and shipyard availability schedules were driving the
DDG 51 SCWE development schedule, and the software was the
“long pole in the tent”. Captain McLain knew, based on her
analysis, that the schedule was going to be a high risk area and took
steps to address this issue in her plan.

Captain McLain understood that the program budget and functional
requirements were essentially set, so she looked at several options
for reducing the planned software development schedule.

Captain McLain updated her plan to include the following:

• More parallel implementation of the software
development activities. This included an incremental
development approach for the software with the
functionality developed and integrated into multiple
builds and the overlapping of specific software
implementation, integration, and test activities.

• Maximize use of COTS and non-developed (NDI)
software and reuse of as much of the existing code as
possible.

• Assumption of relatively high software development
productivity based on her plan to make the developer’s
software process capability a key criterion for contract
award.

After these modifications, the PMO-551 re-ran the software
estimates. Specifically, the PMO-551 planning team assumed the

Part 5 - Software Measurement Case Studies

Page 286

amount of code that had to be developed was smaller due to the
use of additional COTS software and more reused software
components from the baseline system. The resulting DDG 51
SCWE software development schedule showed that the full set of
software requirements could be implemented in 66 months, within
the original budget objective. This estimate was close to the
delivery target date set by the Navy.

From a technical perspective, Captain McLain decided that any new
software developed for the system should be developed in Ada,
using the Ada 95 standard.

The results of the estimation process helped the PMO-551 planning
team complete their tailoring of MIL-STD-498. The risk areas and
the issues they identified in their software analysis helped to define
the required MIL-STD-498 activities and products.

At the completion of the PMO-551 planning process, Captain
McLain had a pretty good idea of what her software development
risks were and where she would have to focus her attention during
the development.

Although her development plan was not without some risk, it was
realistic. Most importantly, she had a clear picture of the program’s
software development issues:

• The realism of the software schedule and the capability
of the developer to meet the planned milestones.

• The real possibility for growth in the software
requirements.

• The ability of the developer to adequately staff the
software development effort.

• The overall impact of cost and schedule constraints on
the ability of the developer to build quality into the
software.

• The adequacy of the developer’s software process
capability.

• The adequacy and effectiveness of the software
development technical approach.

Part 5 - Software Measurement Case Studies

Page 287

2.2 SOFTWARE ACQUISITION

2.2.1 Request for Proposal

After the independent PMO-551 software development plan was
complete, Captain McLain turned her attention to issuing the DDG
51 SCWE Request for Proposal (RFP) and to choosing a capable
developer. The results of the design analysis studies were made
available to all bidders. At the bidder’s conference, Captain McLain
made it clear the successful bidder would have to demonstrate an
effective software development process capability. With the success
of the program tied to the overall capability of the software
developer, Captain McLain specifically addressed her software
development requirements in the RFP. In their proposals, the
bidders were required to provide the following:

• Their preliminary allocation of the system level
requirements provided with the RFP to a proposed
software architecture.

• Their approach for using the existing DDG 51 C4I
software as the baseline for DDG 51 SCWE software
development.

• Their proposed use of COTS software components and
an OSA in the redesigned system.

• A comprehensive set of software data describing the
bidder’s performance on similar development programs.
This data included the sizing, schedule, effort, and
problem report data, as well as the program descriptive
data required to evaluate the developer’s software
development performance.

• A detailed software measurement plan that linked the
program’s risks and issues to defined measures and that
explained how the software measurement data would be
used to track software progress and quality and support
objective communications between the Navy and
developer teams.

• A detailed description of the proposed software
development processes and activities, coupled to an
overall DDG 51 SCWE software development plan. A
detailed software WBS was also required, as well as
quantified estimates of key software parameters related
to the proposed software development approach.

Part 5 - Software Measurement Case Studies

Page 288

Captain McLain also required that each bidder submit, as part of
their proposal, a summary of defined issues resulting from their
analysis of the technical program and planning parameters and the
innovative approaches they would implement to address these
issues.

2.2.2 Proposal Evaluation

The RFP was released in the fall of 1995, and a total of five
proposals were submitted. Of these five, two were considered by
the source selection team to be in the competitive range. Each of
the two prime contractors on these two bids was teamed with
several subcontractors. After a detailed evaluation of each
proposal, a recommendation for award was forwarded to the
Program Manager. There were many aspects about the winning
proposal that impressed the source selection team:

• The successful bidder’s historical data was credible. The
proposal provided clear definitions for software size,
schedule, effort, and problem report data, and indicated
what was included and what was excluded in the
numbers. The data supported the bidder’s claim that it
had an effective software process.

• The successful bidder’s DDG 51 SCWE software
development plan was based on achievable performance
and productivity objectives, and the rationale for the
projections was supported by objective estimates of the
associated software parameters. Further, the proposed
software development plan included a detailed software
WBS mapped to the proposed architecture and
development activities. The WBS related the proposed
software development process to the bidder’s
recommendations for tailoring MIL-STD-498.

• The successful bidder’s software development plan
included an incremental software development approach
with a relatively sequential set of development activities
allocated between two major builds.

• The successful bidder’s proposed measurement program
met all of the requirements specified in the RFP and
clearly reflected that the bidder had experience in using
measurement to support successful development
programs. In the proposal, the proposed measures were
tied to an accurate assessment of the program issues.

Part 5 - Software Measurement Case Studies

Page 289

From the systems design perspective, the successful bidder met the
defined technical requirements for the DDG 51 SCWE program.
The proposed system design, as shown in Figure 2-1, included the
following:

• The modification of the existing system architecture to
include open system interfaces. This change called
specifically for the implementation of an open
commercial standard Fiber Distributed Data Interface
(FDDI) Local Area Network (LAN) to interface the
existing sensors and the new functions to the AN/UYK-
43 computer. This design change provided for minimal
“breakage” to the existing system and supported an
affordable development and future system expansion
using cost-effective components.

• The development and integration of new display
workstations with integrated processors to handle the
new multiple ship engagement functions and associated
display and control functions. The proposed workstation
design made use of both COTS hardware and software.
The workstations were to be interfaced to the baseline
system through the FDDI LAN. This approach also
addressed the need for an advanced human-machine
interface required to implement the new target
engagement and weapons management functions.

• The replacement of the existing flat-file data
management software in the AN/UYK-43 with a COTS
based relational database manager and the use of the
same relational database structure for the new
applications resident in the new workstations. This
design change addressed the large increase in the
amount of data that the new system would have to
process.

• The reallocation of the revised software functionality
between the AN/UYK-43 and the new processors in the
display workstations. The proposal included the revision
and reallocation of the critical engagement and weapons
management functions to the workstation processor.

Part 5 - Software Measurement Case Studies

Page 290

Figure 2-1. DDG 51 Weapons System Software Architecture Upgraded
System

In all, the new software architecture added one function,
Workstation Control, to the system. The AN/UYK-43 Threat
Evaluation function, however, was materially revised and moved to
the workstation processor. The AN/UYK-43 Target Engagement
function was to be completely rewritten and also moved to the
workstation. This work increased the number of CSCIs to 32. The
overall amount of software change was significant, but it reflected
the nature of the new concurrent weapons engagement mission
requirements.

2.2.3 Award

The PMO-551 software measurement analyst, Gary Wilson, was a
member of the source selection team. The results of his analysis of
the submitted software measurement data were an important factor
in selecting the winning bidder. Also significant was the quality of
the data in the winning proposal which demonstrated that the
developer could objectively identify and manage software issues
using software measurement.

The source selection team developed a number of software
measurement indicators to support analysis of the proposed
software development plans. The critical question was the
feasibility of the proposed software development schedule, given
the bidder’s estimated software size and proposed effort profile.
This assessment was based on the calculated software development
productivity required to meet the proposed objectives and the

Part 5 - Software Measurement Case Studies

Page 291

relationship of this required productivity to the bidder’s
performance history on previous programs. Did the proposal
indicate, for example, that the bidder would have to improve his
demonstrated software productivity significantly to meet his
proposed schedule, and, if so, was his approach for doing this
realistic?

Of equal importance was the relationship between the proposed
DDG 51 SCWE software planning parameters. For example, did
the scheduled software development activities peak while the
development staff was being reduced? These were the types of
questions the source selection team was asking.

Gary Wilson developed an indicator which showed the software
productivity history of the two bidders in the competitive range. On
the same indicator, he graphed the software productivity required
for the DDG 51 SCWE, based on the measurement data submitted
in each of the proposals (Figure 2-2). The software size estimates
were normalized based on how the developer said the code was to
be implemented (COTS, NDI, new, or modified), and the schedule
and effort data was used as it was submitted.

Software Productivity
Historical by Bidder

0

20

40

60

80

100

120

140

160

180

200

Successful
Bidder

Unsuccessful
Bidder

S
LO

C
 p

er
 S

ta
ff

 M
on

th

Historical - 1
Historical - 2
Historical - 3
Proposal

PMO-551: DDG 51 SCWE Data as of 31 Mar 96

Figure 2-2. Historical Software Productivity by Bidder

The “Software Productivity” indicator clearly showed that the
successful bidder had proposed a software productivity rate for the
DDG 51 SCWE program that was consistent with his historical
performance. The unsuccessful bidder had proposed a significant

Part 5 - Software Measurement Case Studies

Page 292

increase over his demonstrated productivity rate, but there was no
basis for his claim. In fact, when the source selection team
investigated, it found that the high productivity rate, as proposed,
was tied to an artificially low cost bid in terms of the number of
software development staff that was planned for the development
program. In addition, the historical data submitted by the
unsuccessful bidder was inconsistent, with no clear definitions for
how software lines of code, effort, or milestones were measured.
The source selection team requested several clarifications from the
bidder, but did not receive enough information to substantiate the
data.

One concern with the successful bidder’s proposal was a somewhat
risky 60 month software development schedule. The source
selection team, however, felt that the software process, as
proposed, was effective enough to mitigate this risk.

When assessed with respect to the results of the cost and technical
proposal evaluations, the software measurement results supported
award to the higher priced, but more credible bidder. The
successful bidder’s software data was clearly representative of a
development organization that had an established software
measurement program embedded into a mature software
development process. This bidder’s measurement process could
best address the software issues and risks associated with the DDG
51 SCWE program.

In May 1996, Captain McLain announced that CDX Systems, Inc.
was awarded the development contract for the DDG 51 Surface
Ship Concurrent Weapons Engagement Upgrade Program.

2.2.4 Negotiations

During contract negotiations, PMO-551 finalized the software
development and measurement plans with the Project Manager
from CDX Systems. There were several key objectives:

• Re-affirm the software development start date of 1 July
1996.

• Define the software development schedule, effort, and
sizing plans.

• Define clearly which software measures would be
applied, how CDX Systems would define each software

Part 5 - Software Measurement Case Studies

Page 293

measure, and how software measurement data would be
transferred between CDX Systems and the program
office.

• Ensure the subcontractors were consistent in their use of
measurement when reporting to the prime contractor.

The discussions with CDX Systems were extremely important. The
developer was able to make sure that the program office software
team had a clear understanding of the software data they would be
receiving. They would understand what the data represented, how
it was measured, and most important, how it related to the CDX
Systems software development process. The actual contract
wording is presented in Appendix A.

Captain McLain asked her staff to evaluate the software plans for
feasibility and consistency. Gary Wilson graphed a set of indicators
based on the current CDX Systems planning data. These indicators
are shown in Figure 2-3, Figure 2-4, and Figure 2-5.

Effort Allocation
Planned

0

50

100

150

200

250

300

Jul 96 Jan 97 Jul 97 Jan 98 Jul 98 Jan 99 Jul 99 Jan 00 Jul 00 Jan 01 Jul 01

Date

SRR
Start of

Bld 1 I&T

PMO-551: DDG 51 SCWE Data as of 31 May 96

Start of Bld 2
S/W Design

Start of
Bld 2 I&T TRR

Start of Bld 1
S/W Design

Figure 2-3. Planned Software Effort Allocation

The proposed changes to the existing system resulted in a large
increase in the total size of the software. Almost 700K lines of
existing software were retained from the baseline system. Even with
this amount of software reuse, close to one million new lines of
code would have to be written. With the addition of the COTS
software components, the total estimated size of the new system
was over 3 million logical lines of code. The software effort plan

Part 5 - Software Measurement Case Studies

Page 294

showed a traditional staffing profile and was consistent with the
overall development activities as scheduled. Overall, software
planning data represented a well defined software development
approach.

Figure 2-4. Master Software Development Schedule

Software Size
Estimated Logical Source Lines of Code

Build 1 New Modified Existing Deleted COTS Delivered
SLOC

System Control 20,000 0 305,000 45,000 325,000 605,000
Surface Control 0 0 175,000 0 0 175,000
Target Tracking 5,000 3,000 125,000 0 0 133,000
External Communications 0 0 0 0 0 0
Threat Evaluation 70,000 0 45,000 45,000 0 70,000
Target Engagement 190,000 0 95,000 95,000 0 190,000
Workstation Control 250,000 0 0 0 1,225,000 1,475,000

Build 1 - Total 535,000 3,000 745,000 185,000 1,550,000 2,648,000

Build 2 New Modified Existing Deleted COTS Delivered
SLOC

System Control 0 0 0 0 0 0
Surface Control 0 0 0 0 0 0
Target Tracking 0 0 0 0 0 0
External Communications 30,000 0 110,000 0 0 140,000
Threat Evaluation 215,000 0 135,000 135,000 0 215,000
Target Engagement 210,000 0 125,000 125,000 0 210,000
Workstation Control 0 0 0 0 0 0

Build 2 - Total 455,000 0 370,000 260,000 0 565,000

Total 990,000 3,000 1,115,000 445,000 1,550,000 3,213,000

PMO-551: DDG 51 SCWE Data as of 31 May 96

Figure 2-5. Software Size Estimate

Part 5 - Software Measurement Case Studies

Page 295

Part 5 - Software Measurement Case Studies

Page 296

CHAPTER 3 - DEVELOPMENT PHASE

After the DDG 51 SCWE contract was awarded, Captain McLain
began the complex task of managing the software development
process. Software measurement activities shifted from evaluating
the software plans to tracking performance against those plans.
With her own Navy program organization and CDX Systems,
Captain McLain believed she had a capable software development
team—one that could effectively identify and resolve the expected
software development issues and make the program a success.

This chapter explains how software measurement helps identify and
objectively analyze the software issues and shows how the Program
Manager uses the resulting information to make informed program
decisions. For the DDG 51 SCWE program, software measurement
has become an integral part of the Program Management process
and provides PMO-551 with an effective tool for communicating
with the developer.

3.1 TRACKING DEVELOPMENT PERFORMANCE

3.1.1 Software Measurement Overview

DDG 51 SCWE software development officially started with the
kickoff meeting between CDX Systems and PMO-551 on 1 July
1996. At the kickoff meeting, Captain McLain explained it was
important that her software engineering staff communicate
effectively with the developers at CDX Systems. She also stated
her expectation that they take an integrated team approach to
resolving any technical and management issues. Captain McLain
addressed the importance of an effective software measurement
process and emphasized she would use the software data to help
manage the program and to identify problems as early as possible.

CDX Systems presented a overview of their DDG 51 SCWE
software development process and explained how they were going
to use software measurement to manage the progress and quality of
the software. The lead CDX software engineer on the program
provided a description of the key characteristics of their
measurement program:

Part 5 - Software Measurement Case Studies

Page 297

• The overall measurement program was applied across all
software development activities at the CSCI level. Low
level software data was collected monthly and entered
into their software project management database. For
some measures (e.g., lines of code), data was collected
down to the level of individual units. Per the
development contract, PMO-551 would have direct
electronic access to this data.

• For the project, the process for estimating and
measuring each software parameter was defined and was
consistent with the CDX approach used for past
programs. In addition, CDX reported that all of the
software development subcontractors agreed to use the
same measurement definitions.

• CDX Systems reviewed the DDG 51 SCWE software
WBS and showed how the overall measurement
structure was aligned with the defined software
activities and products. They also reviewed their MIL-
STD-498 implementation.

• CDX Systems stressed that the measurement program
began with the accurate definition and tracking of both
the stated and derived software requirements. They
showed how they were going to measure the total
number of requirements and how they were going to
track the allocation of the requirements to the software
architecture.

• CDX completed the discussion by reviewing the overall
set of measures they intended to use. The measures
themselves were relatively basic, but were implemented
within a well defined process at a meaningful level of
detail.

3.1.2 Software Issue Identification and Analysis

During the first year, the project proceeded relatively smoothly.
The software measurement process was running smoothly and
Captain McLain received a monthly issue evaluation from Gary
Wilson. The software measurement indicators showed some
variance in the monthly actuals relative to the plans, but there were
no major deviations. The Preliminary Software Design Review,
which addressed the CSCI architectural design, was completed on
15 June 1997, six weeks behind schedule. Considering the DDG 51

Part 5 - Software Measurement Case Studies

Page 298

SCWE was a six-year development program, this was only a small
schedule slip and did not cause much concern.

In June of 1997, the Navy decided that the DDG 51 SCWE
functional baseline had to be modified to incorporate a new variant
of the surface-launched Tomahawk cruise missile. The functions
required to implement this new missile were added to the Build 1
software requirements. Since the new missile was added at the
beginning of CSCI detailed design, both PMO-551 and CDX
Systems believed that there would not be any major schedule
impact from the modification.

During the next two months, a team of software engineers from
CDX Systems worked with PMO-551 to analyze and document the
additional requirements and to prepare the technical inputs for the
Engineering Change Proposal (ECP). The new Tomahawk variant
added approximately 550 additional requirements and 62,000
Source Lines of Code (SLOC) to the planning baselines. The
resultant changes were allocated to 450 new software units. The
majority of these requirements were applicable to the Target
Engagement function. The Workstation Control and System
Control functions also had minor revisions due to the new missile.
These new requirements increased the risk associated with the
Target Engagement function, which had already been identified as
high risk by both PMO-551 and CDX Systems.

In November of 1997, Gary showed Captain McLain a Build 1
software development progress indicator based on the number of
software units completing detailed design (Figure 3.1). The first
thing he pointed out was the lag in development progress. The
number of units completing detailed design was significantly behind
plan. CDX Systems had developed a revised plan that took into
account the additional software units which were added because of
the new missile functionality. The new plan called for a much higher
unit design completion rate than originally projected or had been
achieved to date.

Gary had discussed this indicator with CDX Systems. They
believed they could meet the higher unit completion rate projected
in their revised plan. They based this assumption on the 80 new
people they added to the staff over the past few months. CDX
Systems indicated they now had sufficient resources available to
complete the software development within the projected schedule.

Part 5 - Software Measurement Case Studies

Page 299

Design Progress
 Build 1

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Mar 97 Jun 97 Sep 97 Dec 97 Mar 98
Date

Plan 1
Plan 2
Actual

PMO-551: DDG 51 SCWE Data as of 30 Nov 97

SDR-P
Start of

Build 1 I&T

Figure 3-1. Unit Design Progress

In April of 1998, the developer experienced serious and unexpected
problems trying to integrate the COTS products into the DDG 51
SCWE software baseline. Specifically, CDX Systems ran into the
following difficulties:

• The task of integrating the COTS operating system was
considerably more complicated than had been originally
anticipated. Performance problems required the design
and implementation of a functional software “shell”
between the applications software and the COTS
operating system. This meant that new requirements and
code had to be added to the Workstation Control
function.

• Performance problems were discovered while
integrating the COTS relational databases in both the
workstation and the AN/UYK-43. The critical ship-to-
ship data items were not being processed quickly
enough. The only solution was to revert back to flat file
processing for the critical portions of this data.

With this new set of problems, it was clear that the schedule risk
was increasing. In fact, the Build 1 Software Design Review
covering CSCI detailed design was delayed for almost three
months.

Captain McLain continued to review the summary level indicators
on a monthly basis. In August 1998, she decided she wanted to see

Part 5 - Software Measurement Case Studies

Page 300

some indicators that could localize the problem areas to specific
software functions. She directed Gary to take a close look at the
current set of indicators to assess project status.

First, Gary constructed a graph, shown in Figure 3.2, showing the
growth in requirements over the past two years. The first point,
July 1996, represents the number of stated requirements that were
defined in the contract proposal. Between the beginning of the
contract and June 1997, the number of requirements increased. The
majority of this growth occurred during software requirements
analysis, as the CDX system and software engineers achieved a
better understanding of the system functionality and developed the
derived software requirements. The number of requirements
increased again between June and August 1997 due to the addition
of the new Tomahawk missile functionality. Between August 1997
and August 1998, the number of requirements again increased with
the addition of requirements resulting from the problems
experienced while integrating the COTS software.

Requirements Stability
Build 1

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

Jul 96 Oct 96 Jan 97 Apr 97 Jul 97 Oct 97 Jan 98 Apr 98 Jul 98

Date

Growth due to
Derived Requirements

Growth due to Problems
Integrating COTS Software

Growth due to Addition of
New Weapon Capability

Stated
Requirements

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

SRR
Start of

Build 1 I&T

Figure 3-2. Requirements Stability

While it was obvious that the system as a whole experienced
significant requirements growth, Gary also looked at the
requirements growth for each of the major software functions in the
system as shown in Figure 3.3. From this breakdown, it becomes
clear that a large portion of the requirements growth was in the
workstation functions. Most of the requirements growth related to
the new missile occurred in the Target Engagement function. The

Part 5 - Software Measurement Case Studies

Page 301

growth related to the COTS implementation problems increased the
number of requirements in the Workstation Control and System
Control functions.

Requirements Stability
By Function

Build 1

0

500

1,000

1,500

2,000

2,500

3,000

3,500

System
Control

Surface
Control

Target
Tracking

External
Comm

Threat
Evaluation

Target
Engagement

Workstation
Control

Function

As of 7/96
As of 6/97
As of 8/97
As of 8/98

AN/UYK-43
Software

Workstation
Software

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

Not in
Build 1

Not in
Build 1

Figure 3-3. Requirements Stability by Software Function

Captain McLain also wanted more information about the growth of
requirements and the impact of that growth on product size. She
asked Gary to provide a breakdown of size by major function.
From the low level data in the PMO-551 database, he constructed a
software size estimate by software function indicator as shown in
Figure 3.4. The data that was graphed corresponded to the same
periods included in the requirements growth by function indicator.
It was clear that size growth paralleled the growth in requirements,
as was expected.

Captain McLain was also concerned about whether CDX’s
software development staffing levels were tracking to plan and if
the amount of effort being applied to the project was adequate. The
next graph Gary showed Captain McLain was the monthly effort
data presented in Figure 3.5.

Part 5 - Software Measurement Case Studies

Page 302

Software Origin
Developed Versus Non-Developed Code

Build 1

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Plan 1 Plan 2 Plan 3 Plan 4

S
ou

rc
e

Li
ne

s
of

 C
od

e
(In

 T
ho

us
an

ds
)

Non-Developed
(COTS, Reuse)
Developed
(New, Modified)

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

Figure 3-4. Software Size Estimates by Software Origin

This graph showed that although the development was initially
understaffed, CDX Systems added additional people to make up for
the early deficit. In a subsequent discussion with CDX Systems,
Captain McLain was assured there were enough resources to
complete the software development.

Effort Allocation

0

50

100

150

200

250

300

Jul 96 Jan 97 Jul 97 Jan 98 Jul 98 Jan 99 Jul 99 Jan 00 Jul 00 Jan 01 Jul 01

Date

Plan
Actual

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

SRR
Start of Bld 1
S/W Design

Start of
Bld 1 I&T

Start of Bld 2
S/W Design

Start of
Bld 2 I&T TRR

Figure 3-5. Software Effort Allocation

Gary then showed Captain McLain an earlier indicator of software
development progress based on the number of units that have
completed detailed design as shown in Figure 3.6. From this
indicator, it appeared the rate of units completing detailed design

Part 5 - Software Measurement Case Studies

Page 303

had increased significantly after the initial lag noticed in November
of 1997. The data showed that all of the units had completed the
detailed design milestone within one month of the revised plan.

Design Progress
Build 1

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Mar 97 May 97 Jul 97 Sep 97 Nov 97 Jan 98 Mar 98 May 98

Date

Plan 1
Plan 2
Actual

PMO-551: DDG 51 SCWE Data as of 31 May 98

SDR-P
Start of

Build 1 I&T

Process Controls
Removed

Figure 3-6. Unit Design Progress

While the progress indicator gave Captain McLain some reason for
optimism, the problem report data told a different story Gary
showed Captain McLain a summary of the cumulative number of
total and closed problem reports which had been collected during
integration and test. These are shown in Figure 3.7.

Captain McLain noted that the problem report discovery rate
increased rapidly during integration and test. She was disturbed by
the fact that problem report discovery appeared to be occurring at a
much higher rate than problem report closure. She then asked Gary
to show her the problem report data for the individual functions.

Gary calculated problem density by dividing the number of unique
valid problem reports by the new and modified source lines of code
for each function as shown in Figure 3-8. It was clear that, even
when normalized by size, the Target Engagement function was
much more problem prone than any of the other functions. Captain
McLain asked Gary to find out what was going on with this
function.

Part 5 - Software Measurement Case Studies

Page 304

Problem Report Status
Build 1

0

200

400

600

800

1000

1200

Mar 98 May 98 Jul 98 Sep 98 Nov 98 Jan 99 Mar 99 May 99

Date

Discovered
Closed

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

Start of
Build 1 I&T

End of
Build 1 I&T

(Plan)

Figure 3-7. Problem Report Status

Defect Density
Build 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

System
Control

Surface
Control

Target
Tracking

External
Comm

Threat
Evaluation

Target
Engagement

Workstation
Control

Function

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

N/A

AN/UYK-43
Software

Workstation
Software

N/A

Figure 3-8. Defect Density – Build I

Gary visited CDX Systems and met with the software engineering
manager to discuss the workstation CSCI problems. He discovered
that as of January 1998, unit design and code inspections had been
discontinued in an effort to complete the development activities as
quickly as possible. The delays in software development progress
had begun to impact the software testing process. Successful
completion of the unit design and code inspections had been the
primary exit criteria for measuring unit development progress. With
this requirement relaxed, the software developers were not required
to adhere to a key process activity which ensured that only
complete, high quality units were delivered for integration. In

Part 5 - Software Measurement Case Studies

Page 305

effect, the quality of the software became secondary to meeting the
schedule and the measurement indicators had helped to identify
the problem.

Most of the software units impacted by this process change
belonged to the Target Engagement function. This explained the
sudden increase in apparent software development progress based
on the number of units completing detailed design. It also explained
the large number of problem reports being discovered in integration
and test. Defects that should have been found during those
inspections were not being discovered until later. In his discussions
with CDX Systems personnel, Gary also found out that the majority
of the recently added personnel were working on problem
corrections and rework. It was clear that, by removing the process
controls, CDX had only made the situation worse.

By this time, Captain McLain had serious doubts about the
likelihood of completing Build 1 on schedule. In examining the
schedule revisions as shown in Figure 3.9, she noted that CDX
Systems made a series of periodic minor revisions to the DDG 51
SCWE detailed milestone schedule. No changes to any intermediate
milestone were made until it was obvious that the completion date
for that milestone would not be met. Even when revisions were
required, CDX Systems made only small incremental changes,
rather than doing a comprehensive analysis to determine when the
activities could realistically be completed. While completion
estimates for the detailed milestones had slipped, the completion of
integration and testing for Build 1 had not been adjusted. The result
was an integration and test schedule that was becoming less and
less feasible.

Captain McLain began to realize that she might have to reassess the
current DDG 51 SCWE software development plan. Her suspicions
were confirmed when she looked at the achieved productivity to
date for Build 1. It did not appear that CDX Systems would be able
to produce the planned amount of code for Build 1 within the
current schedule. After reviewing the analysis results with the CDX
Systems Program Manager, Captain McLain decided to replan the
software development effort.

Part 5 - Software Measurement Case Studies

Page 306

Figure 3-9. Revised Software Development Schedule

3.2 Revising The Development Plan

In October of 1998, Captain McLain met with the PMO-551 staff
and with managers from CDX Systems to replan the remainder of
the DDG 51 SCWE project. Two options were considered:

• Moving software functionality from Build 1 to Build 2.
• Adding another build, Build 3, and shifting software

functionality between the builds. Under this option,
Build 1 and Build 2 were revised so that each would
contain an equal amount of code, while a smaller
amount of code was integrated into Build 3. Most of the
code that was shifted to a later build was from the
Target Engagement function. This was the highest risk
function and had the most problems with respect to
development progress and quality. The Threat
Evaluation and Workstation Control functions also had
a small amount of code shifted between the builds.

Captain McLain asked Gary to evaluate the feasibility of each of
these two options as shown in Figure 3-10.

Part 5 - Software Measurement Case Studies

Page 307

Software Productivity
Replan Analysis

0

20

40

60

80

100

120

140

160

180

Actuals
to Date

Original
Plan

Replan
Option 1
(2 Builds)

Replan
Option 2

(Add Build 3)

S
LO

C
 p

er
 S

ta
ff

 M
on

th

Build 1
Build 2
Build 3

PMO-551: DDG 51 SCWE Data as of 31 Oct 98

Figure 3-10. Replanned Software Productivity by Build

The first replan was rejected because of its high productivity
requirement for Build 2. This option required the productivity of
Build 2 to be higher than what had been achieved to date on Build
1. This requirement was assessed to be unrealistic. Implementing
this option would most likely have resulted in a second replan later
in the development cycle.

The second option was selected because of several favorable
elements:

• The required productivity for each remaining build was
based on CDX Systems’ achieved software productivity
to date on DDG 51 SCWE.

• This option supported the original delivery schedule of 1
July 2001, although with reduced functionality. An
additional delivery was added for September 2002, 14
months after the original delivery. This additional
delivery would include all of the required functionality.

• This option was based on the current staffing resources
available to the DDG 51 SCWE program. No additional
personnel would be required for this approach. It was
believed that adding more people at this point in the
development would only delay the delivery further.

• Although the schedule was extended by 14 months and
additional funding had to be identified, the revised plan
was realistic and contained no major risks.

Part 5 - Software Measurement Case Studies

Page 308

When PMO-551 presented the replan to the Navy, the
measurement analysis results helped to clarify the situation and
showed that PMO-551 had an objective understanding of the
software development constraints and issues.

As part of the replan, CDX Systems assured the program office that
all process controls would be reinstated, including the unit design
and code inspections.

3.3 SOFTWARE DELIVERY

After the replan, Captain McLain and Gary continued to monitor
the DDG 51 SCWE project. Captain McLain believed that two
issues needed to be monitored more closely. First, she wanted to
ensure that the requirements were being verified at a sufficient rate
to meet the delivery schedule. Secondly, Captain McLain wanted to
assess the adequacy of CDX Systems’ integration and testing
process.

To address the requirements issue, an indicator depicting the
number of software requirements that had been successfully verified
during integration and test was developed as shown in Figure 3-11.
Progress was steady, which told the program office that the
planning revisions were effective. CDX Systems was producing the
software in accordance with the revised schedule and was projected
to meet all delivery requirements.

The quality of the software had also improved. The problem report
discovery rate had begun to decrease, and even with the increased
test activity, CDX was finding fewer serious problems as shown in
Figure 3-12).

Part 5 - Software Measurement Case Studies

Page { PAGE }

Requirements Successfuly T
Total System

0

5,000

10,000

15,000

20,000

25,000

Jul
96

Jan
97

Jul Jan
98

Jul Jan
99

Jul Jan
00

Jul Jan
01

Jul Jan
02

Date

N
u

m
b

e
r

o
f

R
e

q
u

ir
e

m
e

n
ts

T o t a l

Successfu l l
Tested

PMO-551: DDG 51 SC Data as of 31 Jul

SRR
Start of

Build 1 I&T TRR
Start of

Build 2 I&T
Start of

Build 3 I&T

Figure 3-11. Software Requirements Successfully Tested

Problem Reports Versus Test Cases Co
Total System

0

10

20

30

40

50

60

70

80

Jan 98 Jul Jan 99 Jul Jan 00 Jul Jan 01 Jul Jan 02
Date

N
u

m
b

er

o
f

T
es

t
C

as
es

0

50

100

150

200

250

300

N
u

m
b

e
r

o
f

P
ro

b
le

m

R
e

p
o

rt
s

Test Cases
Attempted

Problem Reports
Discovered per Per

PMO-551: DDG 51 SC Data as of 31 May

Figure 3-12. Software Problem Reports and Test Cases Completed

3.4 EPILOGUE

Builds 1 and 2 were delivered on schedule. Figure 3-13 shows the
actual productivities achieved for those builds along with the
productivity observed for Build 3 as of March 2002. Productivity
increased across the three builds, contributing to the on-time
delivery for each build.

Part 5 - Software Measurement Case Studies

Page { PAGE }

Software Product
Performance Summa

0

20

40

60

80

100

120

140

160

180

Actua ls
to Date

O r i g i n a l
P l a n

Replan

S
L

O
C

p

e
r

S
ta

ff

M
o

n
th

Build 1
Build 2
Build 3

PMO-551: DDG 51 SC Data as of 31 Mar

Figure 3-13. Software Productivity Performance Summary

In September of 2002, the PMO-551 / CDX Systems, Inc. team
deployed the DDG 51 Surface Ship Concurrent Weapons
Engagement Upgrade system on the USS John Paul Jones,
DDG 53. Although the issues related to the software development
were significant, use of software measurement had helped the
Program Manager to make objective and informed decisions which
led to the program’s ultimate success.

Part 5 - Software Measurement Case Studies

Page 311

Part 5 - Software Measurement Case Studies

Page 312

AUTOMATED INFORMATION
SYSTEM CASE STUDY

PART 5B

Part 5 - Software Measurement Case Studies

Page 313

Part 5 - Software Measurement Case Studies

Page 314

AUTOMATED INFORMATION SYSTEM CASE STUDY

The Automated Information System case study is based on the
development of a military personnel information system for the
U.S. Air Force. It addresses the use of measurement on a program
which has been under development for some time. The program
has recently failed a major acquisition milestone review, and
measurement is seen as a way to gain some control over the
software development effort. The system is being developed by an
organic Air Force activity working for a program manager within
the same command. The development addresses current DoD
initiatives to promote open systems, AIS interoperability, and the
use of commercial-off-the-shelf (COTS) software packages. The
technical approach includes the use of third and fourth generation
languages and conversion of existing data structures. The critical
issues are largely driven by external development dependencies.
They include the need to meet aggressive development and
deployment schedules, and the requirement that the overall
readiness of the software for deployment be objectively
determined.

The Automated Information System case study is organized into
four chapters:

• Chapter 1, Program Overview, describes the technical and
management aspects of the software development effort.

• Chapter 2, Getting the Program Under Control, shows how
measurement can be implemented on an existing program
to define a realistic software development plan, and
subsequently how to track the development against that
plan.

• Chapter 3, Evaluating Readiness for Test, illustrates how
measurement helps to objectively determine if the software
is ready for operational test and subsequent deployment.

Part 5 - Software Measurement Case Studies

Page 315

• Chapter 4, Installation and Software Support, shows how
measurement is used after the system is fielded to identify
and correct user problems.

Part 5 - Software Measurement Case Studies

Page 316

Part 5 - Software Measurement Case Studies

Page 317

CHAPTER 1 - PROGRAM OVERVIEW

This chapter introduces the AIS program scenario and describes the
technical and management aspects of the development effort. The
program scenario is based on the implementation of a measurement
process on an existing program. As such, special consideration is
given to using software measurement data that is readily available
within the established software and program management
processes. The example program is representative of a typical AIS
system under development to meet DoD business process
reengineering objectives.

1.1 INTRODUCTION

Over the past several years, Ridgway Air Force Base in Cheyenne,
Wyoming has become established as a primary source for the
development of Air Force business information systems. The
software development group at Ridgway began as an organic
software maintenance organization, and has successfully
transitioned its business base from the support of Air Force logistics
and maintenance systems to software system reengineering and
development. Ridgway has benefited from the recent DoD
emphasis on upgrading existing information systems into an
integrated set of more manageable, cost-effective resources, and
has become an important resource in the Air Force Material
Command.

In 1994 the Air Force designated Ridgway Air Force Base as the
lead development organization for the Military Automated
Personnel System (MAPS). MAPS represented the Air Force's
“next generation” military personnel information system. The
program was part of a larger initiative to reengineer the Air Force's
administrative business processes. The reengineering plan included
a service-wide initiatives to modernize information system
hardware, software, and communications interfaces at both the base
and headquarters levels. Existing mainframes and terminals were to
be replaced by client/server architectures, and new capabilities were
to be implemented by adapting existing databases and integrating
them with newly developed applications software. MAPS was an

Part 5 - Software Measurement Case Studies

Page 318

important link in business system modernization effort, since it was
the first part of the overall system to be developed and delivered.
MAPS was scheduled to be deployed at a number of Air Force
bases during 1997. Needless to say, MAPS was an important, and
highly visible program.

In 1995, MAPS had been under development for three years.
During that time, the Ridgway software development group tried to
keep current with changing DoD acquisition policy and related
software initiatives. These included the definition of open systems
architectures, the integration of Commercial Off the Shelf (COTS)
software components, the use of advanced third and fourth
generation programming languages, and an overall restructuring of
the development organization using Integrated Product Teams
(IPT).

In November of 1995, a new program manager was assigned to the
MAPS program. Air Force Lt. Col. Barry Thompson was a 1978
graduate of the Air Force Academy. His background included four
years with the Air Force's Operational Test & Evaluation Center
and eight years in various Air Force system program offices. His
last assignment was as the Deputy Program Manager for a major
upgrade to an Air Force maintenance data system.

Lt. Col. Thompson’s assignment to the MAPS program did not
come under the best of circumstances. At the time of Lt. Col.
Thompson's arrival, MAPS had just undergone an unsuccessful
review by the DoD's oversight committee for major AIS systems,
the Major Automated Information Systems Review Council
(MAISRC). MAPS had failed to receive a Milestone III approval
for system production and deployment from the MAISRC. This
was largely a result of problems with the software, especially with
respect to the amount of completed functionality and the overall
quality of the existing code. The MAISRC report indicated that
there was little confidence in the cost and schedule estimates
presented by the previous program manager in an effort to
substantiate his development plan. There was also a lack of
available data which showed the MAISRC how the program
manager was addressing the key MAPS software development
issues.

Lt. Col. Thompson arrived at Ridgway with clear direction to get
the project under control and to establish an objective, credible plan

Part 5 - Software Measurement Case Studies

Page 319

for the remainder of the development. Lt. Col. Thompson’s first
task was to review the overall technical and management
characteristics of the program. He wanted to identify the events
and decisions which had helped to shape the program in order to
identify the key software issues and problems that he needed to
address.

1.2 AIR FORCE BUSINESS PROCESS MODERNIZATION INITIATIVE

In reviewing the MAPS program history with the Ridgway
development team, Lt. Col. Thompson learned exactly how MAPS
fit into the Air Force Business Process Modernization Initiative.
The MAPS program was intended to reengineer the existing
military personnel information system currently in use throughout
the Air Force. MAPS was the first application to be developed.
Subsequent applications which were to be integrated as part of the
initiative included revised supply, finance and accounting, medical,
payroll, and base-level maintenance functions. The scope of the
initiative was significant. In addition to the upgrade of the base
level business functions, the new applications were required to
support a seamless interface at the headquarters level. As such,
almost all of the key Air Force AIS systems would be impacted in
one way or another.

Lt. Col. Thompson noted several key features of the Air Force
Business Process Modernization Initiative:

• Client/Server Architecture - The existing mainframe
computers and associated video terminals were to be
replaced by client/server architectures at each base and
at each command headquarters.

• Open Systems - The current dependence on vendor-
specific, proprietary operating systems and database
management systems was to be replaced by open system
standards-based architectures. A POSIX compliant
operating system had been selected as part of the
software architecture for MAPS and the other Air Force
AIS systems which were to be reengineered.

• Standard Data Elements - The efficient flow of data
from one DoD information system to another was an
important objective of the initiative. In order to achieve
a high level of interoperability, the revised Air Force
systems, including MAPS, had to adhere to a standard

Part 5 - Software Measurement Case Studies

Page 320

set of data definitions. Control of the data
standardization effort was the responsibility of the
Defense Information Systems Agency (DISA).

• Process Modeling - All of the business processes which
fell under the modernization initiative were required to
be modeled using the ICAM definition language (IDEF).
This modeling effort was important to ensure the
efficiency and interoperability of the various information
systems which would be reengineered as part of the
initiative.

• Integrated Databases - An important aspect of the
modernization initiative was the intent to move away
from “stove-piped” business applications, each with its
own database and unique application characteristics.
MAPS, therefore, had to include an integrated database
which could be accessed by the various user applications
using a common data interface. The intent was for any
given data element to be entered only once at the point
of origination. The data would then be made available
to other applications. Development and control of the
logical and physical data models rested with the Air
Force, and again the MAPS design had to comply with
higher level requirements.

• Maximum use of COTS Software Components - The
use of commercial software packages was strongly
encouraged. As part of the modernization initiative,
special waivers had to be obtained to develop unique
software applications if a commercial counterpart which
met the defined requirements was available.

• TAFIM - All of the revised AIS systems which
comprised the modernization initiative, including
MAPS, were required to be designed and implemented
in accordance with the DoD’s Technical Architecture
Framework for Information Management (TAFIM).

1.3 PROGRAM DESCRIPTION

Lt. Col. Thompson's staff briefed him on the key project events and
the technical and design characteristics of the MAPS program.
MAPS began in the summer of 1994. It had been under
development since that time by the Air Force's Administrative
Systems Development Activity at Ridgway Air Force Base in
Cheyenne, Wyoming. All of the personnel involved in the MAPS
development effort were organic to the Activity. That is, they were

Part 5 - Software Measurement Case Studies

Page 321

either civilian or military personnel directly employed by the Air
Force. The system and software requirements, and high-level
design were defined during the first year of the MAPS
development. In November of 1995, a briefing was given to the
DoD MAISRC oversight group to support a Milestone III decision.
Serious concerns were voiced by the members of the group during
the briefing. The major issues focused on the development of the
MAPS software and included the following:

• The original software development schedule had been
slipping on an incremental basis. The revised “get well”
schedule presented by the previous program manager
appeared to be unrealistic, and could not be
substantiated based upon the development performance
to date.

• Similar to the schedule issue, there was no credible basis
for the cost projections presented to the MAISRC. It
appeared to the MAISRC that the cost of the software
was being driven by the number of development
personnel available, not by the size and capability of the
software which had to be developed.

The original MAPS development plan called for two incremental
deliveries of the required capability. When Lt. Col. Thompson
arrived at Ridgway, the software for the first incremental release
was under development.

MAPS began under a tailored MIL-STD-7935A software process
and had begun to transition to MIL-STD-498. The software
development languages included both Ada 95 and C. Development
tools included a state of the art Ada programming support
environment, a screen generator, and a report generator. A COTS
relational database was also an integral part of the design.

The MAPS software design included twenty-four functionally
defined Computer Software Configuration Items (CSCIs). Thirteen
of these were allocated to Increment 1 of the development and nine
were allocated to the second increment. The remaining two CSCIs
were data conversion software. For each of these CSCIs, access to
the database was to be implemented using SQL. User access and
interface was designed to be implemented using predefined, “user
friendly” screens. Site operators had additional access using SQL
The user interface was to be developed using X-Windows and was
designed to be MOTIF compliant.

Part 5 - Software Measurement Case Studies

Page 322

1.4 SYSTEM ARCHITECTURE AND FUNCTIONALITY

The primary objective of the MAPS program was to reengineer the
existing Air Force military personnel information system to add new
functionality and to meet the overall integrated system requirements
defined by the Business Process Modernization Initiative. To fully
understand the technical implications of migrating the existing
system to the new design, Lt. Col. Thompson compared the
architecture and functionality of the current military personnel
system with the MAPS requirements and specifications.

1.4.1 Current Personnel System

Figure 1-1 shows the hardware architecture for the current
personnel system. The current system is, in reality, two separate
AIS systems. One resides at the base level and the other at
command headquarters. Both the base level and the headquarters
implementations were based on the use of mainframe computers
and video terminals. The applications for both system levels were
written in COBOL, and included hierarchical databases. Both
incorporated character-oriented, non-graphical user interfaces.

The operating concept of the current system included periodic data
transactions from the base-level systems to the headquarters level
system. Selected data was uploaded to headquarters every 24
hours. As with many legacy information systems, the current
military personnel implementation had experienced a significant
number of problems with respect to inconsistent edits between the
two systems. Part of this was attributable to the base level system
requiring very loose edits, while the edits for the headquarters
system were much more constrained. Consequently, there was a
very large rejection rate for data which was uploaded to the
headquarters system. As such, data was often lost in the
transaction process.

To access data at the base level from the headquarters database,
users had to log in and connect the systems over standard phone
lines. This interface approach had proven to be unreliable and
added to the problems associated with transferring data.

Part 5 - Software Measurement Case Studies

Page 323

Figure 1-1. Current System Architecture

1.4.2 Military Automated Personnel System (MAPS)

The hardware architecture for MAPS is shown in Figure 1-2.
MAPS is designed as a single integrated personnel system which
incorporates real time data updates and access between the base
and headquarters level system implementations. The headquarters
portion of the system incorporates a mainframe computer which is
used only for data storage. It is part of the headquarters local area
network (LAN). MAPS incorporates a client/server design at both
the base and headquarters levels. Data transfer between the levels
is provided by a designated MILNET interface.

The MAPS client/server architecture integrates Graphical User
Interface (GUI) and display functions on individual PCs, while the
shared application functions reside on a UNIX based server. This
design is applicable at both the base and headquarters levels.

When MAPS is initially fielded at each Air Force base, it will be
required to interface with the existing base-level AIS systems.
These systems will gradually disappear as the Business Process
Modernization Initiative progresses. As each existing AIS system is
reengineered and integrated into the overall information system
structure, all base-level applications will transition to a common
enterprise architecture with access to a common database. As with
MAPS, all interaction between applications will then occur through
the shared database.

Part 5 - Software Measurement Case Studies

Page 324

Figure 1-2. MAPS Architecture

The MAPS design incorporates two functional subsystems. As
expected, these include the Base-level functional subsystem and the
Headquarters functional subsystem. The Base-level subsystem
includes those standard functions that support the military
personnel assigned to individual bases, or to commands, such as
individual aircraft squadrons, which are resident on base. The type
of personnel data which must be available from MAPS at the base
level includes individual information on each officer and enlisted
person assigned at the base. This data includes age, rank, skill
level, training history, individual personnel assignment and
promotion history, and information pertinent to past performance
evaluations. The Base-level MAPS subsystem also contains
personnel information at the command level, such as squadron
mobilization personnel requirements, casualty data, skill profiles,
and personnel replacement priority information.

The MAPS Headquarters subsystem includes military personnel
functions that generally support higher level information
requirements than those needed at the base level. The
Headquarters subsystem provides information which supports
overall force mobilization, strategic planning, and analysis of force
manpower requirements. For example, if a senior Air Force
commander wants to deploy an offensive air superiority fighter such
as the F15-E, the Headquarters subsystem can provide information
about the location of each F15-E squadron, and the availability and

Part 5 - Software Measurement Case Studies

Page 325

training history of the pilots, maintenance personnel and other
support crew. If the Air Force needed to plan for night time air
sorties into mountainous terrain, MAPS would help identify those
squadrons with the appropriate qualifications.

The overall MAPS development plan called for the subsystems to
be developed and delivered in separate increments. The Base-level
functions would comprise Increment 1 and the Headquarters
functions Increment 2. In addition to development of the respective
increment functionality, MAPS required that the data from the
current military personnel information system be converted and
entered into the redesigned MAPS data structures. As such, the
MAPS software development effort included the development of
data conversion software for both the base-level and the
headquarters-level databases.

Part 5 - Software Measurement Case Studies

Page 326

Part 5 - Software Measurement Case Studies

Page 327

CHAPTER 2 - GETTING THE PROGRAM UNDER CONTROL

After his review of the MAPS development effort, Lt. Col.
Thompson knew that he had a pretty big challenge in front of him.
A detailed review of the software development and management
processes revealed that the program was essentially being run with
milestone schedules and viewgraphs. By mid-1995, the software
development schedule milestones had begun to slip on a regular
basis. Although this was evident in the milestone charts, there was
no action being taken to identify and correct the underlying causes.
An analysis of the problem report data in the configuration
management database showed that many more software problem
reports were being opened than were being closed. All of the
available personnel, as it was explained to him, were assigned to
implementing and testing the code to meet the defined schedule for
Increment 1. There wasn’t really enough time to keep up with the
problem fixes at this stage of the development.

To gain control over the MAPS software, Lt. Col. Thompson had
to address two key issues. The primary issue was software
development Schedule and Progress. Lt. Col. Thompson had to
assess the feasibility of the current schedule, and determine why
performance against the schedule was lagging. Second, he had to
address the overall Product Quality of the developed software
products. Based upon past experience, Lt. Col. Thompson had a
pretty good idea that the software defects represented in the open
problem report backlog had a lot to do with the schedule issue.
Given the increased visibility of the program after the results of the
MAISRC review, Lt. Col. Thompson knew that the system had to
work correctly when it was initially fielded.

2.1 EVALUATING THE SOFTWARE DEVELOPMENT PLAN

When Lt. Col. Thompson reviewed the MAPS development plan,
he tried to identify how the original schedules and staffing
requirements were established. The most detailed schedule
information that was available was in the form of Gantt charts
showing major project milestones and dates. There was little detail
with respect to the low level MAPS software development activities

Part 5 - Software Measurement Case Studies

Page 328

and associated CSCI development tasks. There was a project
Work Breakdown Structure (WBS), but it seemed to apply only
loosely to the current tasks. It appeared that the overall
development schedule was driven by the required delivery date of
the system. Key development activities were scheduled very
optimistically to meet the delivery date.

There was no MAPS staffing plan that allocated personnel
resources to specific software development tasks. A total of 40
software personnel were assigned full time to the MAPS program.
All were available through the planned delivery date for Increment
2. The people were being applied to the program on a level of
effort basis.

By this time it was clear to Lt. Col. Thompson that in order to
manage the critical software issues he needed better and more
detailed information. To help him get the information, he assigned
one of the members of his program staff, Jennifer Cooper, as the
MAPS software measurement analyst. Jennifer was familiar with
implementing a measurement process from her experience on past
programs, but this would be the first time she had to tailor and
apply measurement for an existing program. Jennifer met with Lt.
Col. Thompson to identify and prioritize the major software issues
to be addressed by the measurement effort. From the discussion it
was clear that Lt. Col. Thompson would give the measurement
activities a high priority, and that he intended to use the
measurement results to not only help to get the program back on
track, but also to show senior management how the program was
progressing.

Lt. Col. Thompson and Jennifer Cooper discussed the problems
related to implementing measurement on an existing program,
especially one which was in trouble. Although all of the
measurement data that they wanted would not be immediately
available, they felt that they had enough basic information to start
to address the key issues. They both decided that it would be a
good idea to review the software measurement results on a weekly
basis.

The first question Lt. Col. Thompson had to answer was whether
or not the original MAPS software schedule was realistic, given the
projected level of staffing and the overall performance of the
development team to date.

Part 5 - Software Measurement Case Studies

Page 329

Lt. Col. Thompson asked Jennifer to generate an independent
schedule estimate based upon the size of the software product and
the expected software productivity. Although this sounded like a
straightforward request, Jennifer understood that the characteristics
of the program required two separate sets of analysis. There were
two different “types” of software development taking place, each
described by distinct development approaches. These included:

• Development of the application software for both
incremental deliveries. This development effort was
based on the use of advanced development techniques
and 4th generation languages.

• Development of the data conversion software. This
development effort could best be described as a
“typical” support software development effort using a
high order language with minimal process requirements.

When the system is ready for delivery there will actually be a third
“type” of software development, the conversion of the databases
and the installation of the system at each base (Increment 1) and at
command headquarters (Increment 2). At this point, however, this
was not a major concern.

Jennifer needed to estimate the size of the software to be developed
in order to project the MAPS development schedule. She decided
to use function points as the basic size measure for the Increment 1
and 2 application software. Function points, although somewhat
harder to estimate and measure than lines of code, seemed to be a
better choice due to the mix of third and fourth-generation
languages (4GL) on this part of the development. Since the
developers were also using a screen generator tool to develop the
user interface screens, the used of lines of code or another product
size measure would have been difficult. Jennifer used two methods
to calculate the required productivity figures. In addition to a
simple functional size to effort ratio, Jennifer used a software cost
model that accepted function points as a data input. The model
also took into account the productivity impact of language type and
reused code.

For the data conversion software, Jennifer decided to use lines of
code to estimate the size of the software. In this case, lines of code
were a better choice because the software was being written
entirely in C.

Part 5 - Software Measurement Case Studies

Page 330

Jennifer spent several weeks with the development team to arrive at
the function point counts and the lines of code estimates. The
function point counts were based upon the methodology defined in
the Function Point Counting Practices Manual, Release 4.0, from
the International Function Point Users Group (IFPUG). The lines
of code estimates were based on the number of logical statements
and excluded comments. Jennifer summarized the sizing results for
Lt. Col. Thompson on the table shown in Figure 2-1.

The information showed the size for each of the CSCIs in
Increments 1 and 2. The table also showed the primary language
and the projected number of low-level design components or units.

The relational database and the Ada to SQL bindings inherent in the
MAPS design were relatively new COTS software products. Input
screens and reports were being generated by 4GLs.

Jennifer’s projections indicated the following:

• The minimum schedule to develop both functional
increments is four months longer than the current
development schedule.

• In order to meet even the extended schedule, the MAPS
development staffing levels would have to be
significantly increased.

Although these analysis results were expected, they indicated that
Lt. Col. Thompson would have to replan the remainder of the
MAPS program define a more realistic development plan.

2.2 REVISING THE SOFTWARE DEVELOPMENT PLAN

Lt. Col. Thompson used the cost model estimates as the basis for a
revised software development plan. He asked Jennifer to show the
new schedule in the form of a Gantt chart. This revised schedule is
shown in Figure 2-2.

The revised schedule began with the completed activities. The
system requirements and high-level design activities were ongoing
from July 1994 through May 1995.

Part 5 - Software Measurement Case Studies

Page 331

Software Size Estimates

CSCI Abbr. Language Number
of Units

Size
(Function

Points)

Increment 1 - Base Level Functions

1. Personnel Information BPI Ada 58 429
2. Assignments BAS Ada 36 227
3. Availability (TDY, etc.) BAV Ada 12 71
4. Unit Training BUT Ada 20 114
5. Unit Skills Inventory BUS Ada 34 223
6. Security Clearances BSC Ada 15 138
7. Performance Evaluations BPE Ada 41 252
8. Promotions BPR Ada 37 154
9. Unit Mobilization BUM Ada 51 390
10. Unit Reenlistments BUR Ada 17 92
11. Casualty Reporting BCR Ada 23 109
12. Unit Replacement Priorities BUP Ada 27 147
13. Personnel Database (Base level entities) BPD 450

Increment 1 Total 371 2,796

Increment 2 - HQ Functions

1. Organization Master HOM Ada 33 189
2. Force Training HFT Ada 28 141
3. Force Skills HFS Ada 22 123
4. Manpower Requirements HMP Ada 55 375
5. Manpower Authorization HMA Ada 21 115
6. Force Replacement Priorities HFP Ada 30 170
7. Strategic Planning HSP Ada 47 320
8. Force Mobilization HFM Ada 65 392
9. Personnel Database (HQ-level entities) HPD 210

Increment 2 Total 301 2,035

CSCI Abbr. Language Number
of Units

Size
(SLOC)

Data Conversion Programs

1. Base-level BDC C 10 9,500
2. HQ-level HDC C 7 6,000

Conversion Total 17 15,500

Ridgway AFB: MAPS Data as of 31 Dec 95

Figure 2-1. Software Size Estimates

Part 5 - Software Measurement Case Studies

Page 332

Figure 2-2. Software Development Schedule

Top level requirements and design were completed early in the
development effort for the entire system. With these activities
complete, the revised schedule called for the independent
development of the application software in two parallel increments
as previously defined. The development of each increment included
detailed design, coding, and integration and test.

The detailed design for Increment 1 was completed in November of
1995. Increment 1 was to be fielded by the end of 1996. Detailed
design for Increment 2 was scheduled to begin in early 1996.
Increment 2 was scheduled for delivery in mid 1997. The data
conversion software was scheduled to be developed in parallel with
the respective functional increments. Data conversion and
installation was scheduled to occur over a ten-month period for
Increment 1 and a one-month period for Increment 2.

Lt. Col. Thompson identified two major development activities on
the critical path. These were the "Personnel Information" CSCI for
the Base-level subsystem and the data conversion software for both
functional increments. The “Personnel Information” CSCI was
critical because it has to be completed before the other CSCIs could
be integrated and tested. The data conversion software was critical
because it was needed to convert the databases at each base and at

Part 5 - Software Measurement Case Studies

Page 333

headquarters. The data conversion software had to be completed,
and had to work properly, before the MAPS increments could be
fielded. Lt. Col. Thompson decided to track these critical-path
items closely.

The results of the productivity analysis were also used as the basis
for the revised MAPS staffing plan. The projected effort
allocations for Increment 1 and Increment 2, were graphed as
shown in Figure 2-3. When Lt. Col. Thompson reviewed the
incremental effort allocation, he noted that the peak full time
staffing requirement did not exceed 35 people. Since the schedule
called for the MAPS increments to be developed in parallel, Lt.
Col. Thompson asked Jennifer to generate a system level effort
allocation graph. This graph is depicted in Figure 2-4.

Effort Allocation
Planned

0

5

10

15

20

25

30

35

40

Jul 94 Jan 95 Jul 95 Jan 96 Jul 96 Jan 97 Jul 97

Date

Requirements and
Preliminary Design

Increment 1 Increment 2

SSR PDR CDR (1) CDR (2)
End of

OAT (1)
End of

OAT (2)

Ridgway AFB: MAPS Data as of 31 Dec 95

Figure 2-3. Planned Effort Allocation by Increment

When Lt. Col. Thompson looked at the total system effort profile,
which aggregated the individual effort requirements, several things
became apparent. It was clear that the number of people currently
assigned to the development team was not adequate to meet the
peak staffing requirements which would occur in 1996. Even more
important, the level staffing profile of 40 people did not met the
needs of the program. The development had been inefficiently
overstaffed through 1995, and was then projected to experience
shortfalls as both Increments 1 and 2 were under development in
1996.

Part 5 - Software Measurement Case Studies

Page 334

Effort Allocation

0

10

20

30

40

50

60

70

Jul 94 Jan 95 Jul 95 Jan 96 Jul 96 Jan 97 Jul 97
Date

Plan
Actual

SSR PDR CDR (1) CDR (2)
End of

OAT (1)
End of

OAT (2)

Ridgway AFB: MAPS Data as of 31 Dec 95

Figure 2-4. System Level Effort Allocation

Lt. Col. Thompson used the measurement results to brief senior
management about some of the issues impacting the development
of the MAPS software. They agreed with his overall assessment
and agreed to add four months to the current development
schedule. They also agreed to allocate additional funding to
support the 1996 staffing requirements. The plan was to use
qualified Air Force personnel from other projects, and to hire
outside contractors to help with detailed design, coding, and
software integration and test for the MAPS Increment 2
development.

2.3 TRACKING PERFORMANCE AGAINST THE REVISED PLAN

Once the new schedule and staffing plans were in place, Lt. Col.
Thompson’s concerns shifted from evaluating the feasibility of the
plans to assessing performance against the plans. Although the
milestone data continued to be useful in addressing the schedule
and progress issues, more detailed information was required to
track the degree of completion of the key development activities
and products. The need for this information was clear as Lt. Col.
Thompson reviewed the information in the Gantt chart which
represented the revised program schedule (Figure 2-2 refers). The
milestone schedule indicated that detailed design for Increment 1
had been completed and software implementation was well
underway. Based on the schedule, about two-thirds of the time
allocated for coding had already elapsed. This didn’t mean

Part 5 - Software Measurement Case Studies

Page 335

however, that two-thirds of the Increment 1 software had been
coded. To get the information about the degree of activity and
product completion that they needed, Lt. Col. Thompson and
Jennifer Cooper decided to implement several work unit progress
measures.

Work unit progress measures compare the actual completion of
associated work units for software products and activities against a
pre-established plan. If objective completion criteria for each type
of work unit are defined and adhered to, work unit progress
measures provide for a clear determination of software
development progress. For each of the MAPS CSCI's, Jennifer
recommended that the program use counts of the number of design
units completed as the work unit progress measure. The design
units represented the lowest practical level of measurement, and the
data could easily be collected from the configuration management
system. In this case, a "completed" design unit was defined as
passing unit test and being entered into the program library.

To generate the CSCI work unit progress indicators, Jennifer first
defined the planned rate of unit completion. Without detailed
planning data available, Jennifer generated a straight line
completion plan beginning with CDR and ending with the scheduled
completion of the Increment 1 coding activity. In Jennifer's
previous experience with work unit progress measures, she had
found that the more accurate plans often looked more like an S-
shaped curve than a straight line. This was due to the fact that the
first few units tended to be completed slowly, followed by a faster
rate of completion rate as the activity progressed. Nearing the end
of the software activity, the completion rates tended to slow again
as the more difficult units tended to be completed last. For the
MAPS work unit progress measures, the straight line plan was not
perfect, but was seen as a useful approximation. Everyone
understood that they would not be too alarmed if progress lagged
behind the straight-line plan at the beginning of the development
activity.

Once Jennifer had established the plan, she accessed the
configuration management library to obtain a count of units
completed to date. Specifically, she counted the number of units
that had been entered into the library each week over the course of
Increment 1 implementation. The resulting graph is shown in

Part 5 - Software Measurement Case Studies

Page 336

Figure 2-5. The graph indicated that the CSCI implementation was
progressing in accordance with the revised development plan.

Implementation Progress
Increment 1

0

50

100

150

200

250

300

350

400

1 Nov 95 22 Nov 13 Dec 3 Jan 96 24 Jan 14 Feb 6 Mar 27 Mar

Date

Plan
Actual

Ridgway AFB: MAPS Data as of 31 Jan 96

Figure 2-5. Unit Implementation Progress

Jennifer knew that Lt. Col. Thompson wanted to emphasize
software measures related to the schedule and progress issue. As
such, she decided to track progress for the two items on the critical
path very closely. These were the development of the Personnel
Information CSCI and development of the data conversion
software. The Personnel Information CSCI was scheduled to be
completed by March, 1996. Jennifer constructed a plan to track
work unit progress for the single CSCI the same way she did it for
the aggregate of the CSCIs in Increment 1. Again, the plan was
derived by drawing a straight line between CDR and the scheduled
end of the coding activity. The resulting indicator was graphed and
is depicted in Figure 2-6. When the actual number of design units
were compared to the plan, it became immediately clear that
progress on this critical CSCI was lagging significantly.

Jennifer then decided to try and identify the source of the progress
problem in the Personnel Information CSCI. She defined two new
work unit progress indicators using a somewhat different
perspective. She graphed the development progress data for the
screens and reports separately from the units which performed
internal processing. The screens and reports were being
implemented using a 4GL while the internal processing code was
being written in Ada.

Part 5 - Software Measurement Case Studies

Page 337

Implementation Progress
Increment 1

CSCI - Personnel Information (BPI)

0

20

40

60

80

1 Nov 95 22 Nov 13 Dec 3 Jan 96 24 Jan 14 Feb 6 Mar 27 Mar

Date

Plan
Actual

Ridgway AFB: MAPS Data as of 31 Jan 96

Figure 2-6. BP1 Unit Implementation Progress

The results are shown respectively in Figures 2-7 and 2-8. The
measurement data showed that the screen and report development
was on track and indicated that the problem was confined to the
Ada code. When Lt. Col. Thompson investigated, he found out that
the Ada developers were having difficulty with interfacing their
respective CSCIs to the COTS relational database. The problem
was not critical from a technical perspective, but the workarounds
were taking quite a bit of time to implement using SQL. Lt. Col.
Thompson did several things to correct the interface problems. The
first thing that he did was to bring in representatives from the
COTS vendors to work on-site with the Ada developers to provide
real-time support in resolving interface problems. Secondly, he had
the development team conduct a one-time in-depth inspection of
the CSCI’s design and completed coded. This inspection identified
some design structures which were inefficient, but which could be
corrected. Col. Thompson also assigned several of his most
experienced Ada programmers to work on the Personnel
Information CSCI in an attempt to correct the problem.

The other portion of the Increment-1 work that was on the critical
path was the data conversion software for the base-level databases.
In tracking work unit progress for this software, Jennifer decided to
count of lines of code that had been entered into the configuration
management library rather than counting the number of completed
units.

Part 5 - Software Measurement Case Studies

Page 338

Implementation Progress
Increment 1

Screens and Reports

0

5

10

15

20

25

30

1 Nov 95 22 Nov 13 Dec 3 Jan 96 24 Jan 14 Feb 6 Mar 27 Mar

Date

Plan
Actual

Ridgway AFB: MAPS Data as of 31 Jan 96

Figure 2-7. Screens and Reports Implemented

Implementation Progress
Increment 1
Ada Code

0

5

10

15

20

25

30

35

40

1 Nov 95 22 Nov 13 Dec 3 Jan 96 24 Jan 14 Feb 6 Mar 27 Mar

Date

Plan
Actual

Ridgway AFB: MAPS Data as of 31 Jan 96

Figure 2-8. Ada Unit Implementation Progress

She decided that completed lines of code was a better measure of
progress than a count of units because the data conversion software
was divided up into relatively few units and they varied drastically
in size. The units were not equivalent and using them to track
progress would have been misleading. Jennifer generated the plan
and actuals for the data conversion software and graphed the
indicator as shown in Figure 2-9.

Part 5 - Software Measurement Case Studies

Page 339

The results showed that the data conversion software development
progress was reasonably on track.

Implementation Progress
Increment 1

Data Conversion Programs

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

1 Nov 95 22 Nov 13 Dec 3 Jan 96 24 Jan 14 Feb 6 Mar 27 Mar

Date

Plan
Actual

Ridgway AFB: MAPS Data as of 31 Jan 96

Figure 2-9. Data Conversion Implementation Progress

Part 5 - Software Measurement Case Studies

Page 340

Part 5 - Software Measurement Case Studies

Page 341

CHAPTER 3 - EVALUATING READINESS FOR DELIVERY

During 1996, the MAPS measurement process was effective in
helping to manage software development effort. Progress against
the revised plan was sufficient enough to allow for the resolution
of the problem reports that were previously backlogged.
Additional personnel which were earlier added to the development
team allowed for the concurrent development of both the Base and
Headquarters level MAPS increments. The progress measures
showed that Increment 1 was nearing the completion of integration
and test, and some system level testing had already been conducted.
The primary issue had shifted from schedule and progress to the
quality of the software. The key question was the readiness of the
software for Operational Acceptance Testing.

3.1 INCREMENT 1

As the initial 1997 delivery dates grew closer, Lt. Col. Thompson
wanted to know if Increment 1 was ready to begin the Operational
Acceptance Test. To help answer this question Jennifer defined a
set of related indicators and graphed them as shown in Figure 3-1.

When Jennifer first joined the MAPS program, the program had not
been collecting effort data at the level of detail required to show
how much effort was being applied to software rework. As an
organic development activity it was difficult to get the staff to
record on their timecards how they actually applied their effort
during the week. Since the emphasis had been on generating new
code to meet the existing schedule, the development team didn’t
see a need for the information anyway. As such, only development
effort was collected as part of the time-reporting system. To get the
data that she needed, Jennifer asked one of the programmers to
modify the problem reporting system to collect the “re-
development” and “retesting” effort data related to software rework
on a problem by problem basis.

Part 5 - Software Measurement Case Studies

Page 342

S
of

tw
ar

e
S

iz
e

E
st

im
at

es
In

cr
em

en
t 1

a)
b

)

c)
d

)

P
ro

bl
em

 R
ep

or
t S

ta
tu

s

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00 29

 J
an

11
 M

ar
22

 A
pr

3
Ju

n
15

 J
ul

26
 A

ug
7

O
ct

18
 N

ov

D
at

e

Number of Problem Reports

D
is

co
ve

re
d

C
lo

se
d

S
ta

rt
of

O
A

T
S

ta
rt

of
 S

/W
In

t &
 T

es
t

S
ta

rt
of

 S
ys

In
t &

 T
es

t
E

nd
 o

f
O

A
T

R
id

gw
ay

 A
FB

: M
A

P
S

D
at

a
as

 o
f 1

2
A

ug
 9

6

P
ro

bl
em

 R
ep

or
ts

 D
is

co
ve

re
d

05010
0

15
0

20
0

25
0

30
0

35
0

40
0 29

 J
an

11
 M

ar
22

 A
pr

3
Ju

n
15

 J
ul

26
 A

ug
7

O
ct

18
 N

ov

D
at

e

Number of Problem Reports

D
is

co
ve

re
d

pe
r

P
er

io
d

S
ta

rt
of

O
A

T
E

nd
 o

f
O

A
T

S
ta

rt
of

S
/W

In
t &

 T
es

t
S

ta
rt

of
 S

ys
In

t &
 T

es
t

R
id

gw
ay

 A
FB

: M
A

P
S

D
at

a
as

 o
f 1

2
A

ug
 9

6

E
ff

or
t A

llo
ca

tio
n

010203040506070809010
0 29

 J
an

11
 M

ar
22

 A
pr

3
Ju

n
15

 J
ul

26
 A

ug
7

O
ct

18
 N

ov
D

at
e

Staff Months

R
ew

or
k

D
ev

el
op

m
en

t

S
ta

rt
of

O
A

T
S

ta
rt

of
 S

/W
In

t &
 T

es
t

S
ta

rt
of

 S
ys

In
t &

 T
es

t
E

nd
 o

f
O

A
T

R
id

gw
ay

 A
FB

: M
A

P
S

D
at

a
as

 o
f 1

2
A

ug
 9

6

Te
st

 P
ro

gr
es

s

0

50
0

10
00

15
00

20
00

25
00

30
00 29

 J
an

11
 M

ar
22

 A
pr

3
Ju

n
15

 J
ul

26
 A

ug
7

O
ct

18
 N

ov
D

at
e

Number of Test Cases

P
la

n
A

tt
em

pt
ed

P
as

se
d

S
ta

rt
 o

f
O

A
T

S
ta

rt
of

 S
/W

In
t &

 T
es

t
S

ta
rt

of
 S

ys
In

t &
 T

es
t

E
nd

 o
f

O
A

T

R
id

gw
ay

 A
FB

: M
A

P
S

D
at

a
as

 o
f 1

2
A

ug
 9

6

F
ig

u
re

 3
-1

.
In

cr
em

en
t

1
R

ea
d

in
es

s
fo

r
T

es
t

Part 5 - Software Measurement Case Studies

Page 343

The change in the process was briefed to the developers, and
Jennifer began to collect the data she needed to compare the
amount of effort spent in rework vs. new development. The data
was graphed and is presented in the lower-right hand quadrant of
Figure 3-1.

Jennifer combined the rework effort data with a work unit progress
graphs for cumulative problem reports (Figure 3-1a), and a graph
of the number of problem reports being opened on a weekly basis
(Figure 3-1b). She also included a graph of test case progress
(Figure 3-1c). This combination of measurement results suggested
that Increment 1 was not yet ready to begin the Operational
Acceptance Test. Lt. Col. Thompson wanted to see the open and
closed problem report trends converging, the number of new
problems being discovered declining, the number of test cases
passed equal to the number planned, and the amount effort being
applied for rework decreasing. The results indicated that the
development staff was increasingly spending time correcting new
Increment 1 problems. This was of concern because they should
have been transitioning to the development of the code for
Increment 2. He met with Jennifer and asked her for more
information in order to identify what needed to be done to improve
the situation. Specifically, he wanted information about the types
of problems that were being reported. He was hoping that there
was a common type of problem that could be effectively dealt with.

Jennifer spent the better part of a week with several of the testing
personnel reviewing the problem reports and classifying them as
being related to performance, logic, interfaces, or other. She
decided to implement this classification scheme as a permanent part
of the problem reporting system so that the information would be
readily available to support future analysis. The results of the
classification effort were graphed and are depicted in Figure 3-2.
By far, the greatest source of the Increment 1 problems were
related to performance deficiencies.

Jennifer further classified the performance problems according to
their source. The results are shown in Figure 3-3. The most
common type of performance problem was due to the incorrect use
of SQL by the developers.

Part 5 - Software Measurement Case Studies

Page { PAGE }

Problem Report Classific
Increment 1

70%

13%

7%
10%

0

250

500

750

1000

1250

1500

1750

2000

2250

Performance Logic Interfaces Other

Category

N
u

m
b

e
r

o
f

P
ro

b
le

m

R
e

p
o

rt
s

Ridgway AFB: MAP Data as of 19 Aug

Figure 3-2. Increment 1 Problem Report Classification

Problem Report Classifica
Performance Category

Increment 1

51%

29%

20%

0

200

400

600

800

1000

1200

SQL Usage DB Design LAN Tuning

Performance Category

N
u

m
b

e
r

o
f

P
ro

b
le

m

R
e

p
o

rt
s

Ridgway AFB: MAP Data as of 19 Aug

Figure 3-3. Source of Performance Problems

Jennifer discussed the results of her analysis with Lt. Col.
Thompson and pointed out that the MAPS development represented
the first time that many of the people on the development team had
used a relational database and SQL. The staff’s previous experience
had been with hierarchical databases and COBOL. This probably
should not have been a surprise since the SQL issue was part of the
reason for the previous Personnel Information CSCI development
problems. Lt. Col. Thompson again decided to bring in some
additional expertise to address the SQL issue. Although it wasn’t

Part 5 - Software Measurement Case Studies

Page { PAGE }

the best approach this late in the program, the problems needed to be
fixed quickly.

3.2 INCREMENT 2

Increment 2 was scheduled for delivery early in 1997. According to
the development schedule, Increment 2 should have been nearing the
completion of System Test by the end of February, 1997. To assess
the Increment 2 readiness for test status, Jennifer generated the same
combination of graphs using the same indicators as she had done for
Increment 1. The results are shown in Figure 3-4.

This time the situation was much more encouraging. The trends for
open and closed problem reports were converging, the discovery
rate for new problems was declining rapidly, and the amount of
rework was relatively low and stable. In addition, a comparison
between the number of test cases planned, executed, and passed
provided further evidence that testing was being completed in
accordance with the schedule. Jennifer wondered why the number
of newly discovered problems was declining so rapidly. Was the
software that much better? Were discovered problems not being
reported? Had the testing stopped? The test progress results helped
Jennifer answer part of her question. Since testing was proceeding
as scheduled, the lower number of new problem reports were not a
result of reduced testing efforts. Jennifer looked into the reporting
process and found that the identified problems were still being
consistently documented.

Jennifer had continued to track the classes of problems being
reported as shown in Figure 3-5. In contrast to the results for
Increment 1, which had a high proportion of problems related to
performance, the problems for Increment 2 were much more evenly
distributed. In all the measurement data for Increment 2 indicated
that the issues and problems that were experienced in Increment 1
had been successfully addressed. Lt. Col. Thompson’s decisions
with respect to focusing the right resources where they were needed
had helped.

Part 5 - Software Measurement Case Studies

Page { PAGE }

S
o
f
t
w

a
r
e

S
i
z
e

E
s
t
i
m

a
t
e
s

R
e
a
d
i
n
e
s
s

f
o
r

T
e
s
t

I
n
c
r
e
m

e
n
t

2

a
)

b
)

c
)

d
)

P
r
o
b
l
e
m

R
e
p
o
r
t

S
t
a
t
u
s

0

2
5

0

5
0

0

7
5

0

1
0

0
0

1
2

5
0

1
5

0
0

1
9

 A
ug

 9
6

1
4

 O
ct

9
 D

ec
3

 F
eb

3
1

 M
ar

2
6

 M
ay

2
1

 J
ul

D
a
t
e

Number of Problem Reports

D
i
s
c
o
v
e
r
e
d

C
l
o
s
e
d

S
ta

rt
 o

f
O

A
T

S
ta

rt
 o

f
S
/W

In
t

&
 T

es
t

S
ta

rt
 o

f
S
ys

In
t

&
 T

es
t

En
d
 o

f
O

A
T

R
i
d
g
w

a
y

A

F
B
:

M

A
P
S

D
a
t
a

a
s

o
f

1
7

F
e
b

9
7

P
r
o
b
l
e
m

R
e
p
o
r
t
s

D

i
s
c
o
v
e
r
e
d

05
0

1
0

0

1
5

0

2
0

0

2
5

0

1
9

 A
ug

 9
6

1
4

 O
ct

9
 D

ec
3

 F
eb

3
1

 M
ar

2
6

 M
ay

2
1

 J
ul

D
a
t
e

Number of Problem Reports

D
i
s
c
o
v
e
r
e
d

p
e
r

P
e
r
i
o
d

S
ta

rt
 o

f
O

A
T

En
d
 o

f
O

A
T

S
ta

rt
 o

fS
/W

In
t

&
 T

es
t

S
ta

rt
 o

f
S
ys

In
t

&
 T

es
t

R
i
d
g
w

a
y

A

F
B
:

M

A
P
S

D
a
t
a

a
s

o
f

1
7

F
e
b

9
7

E
f
f
o
r
t

A

l
l
o
c
a
t
i
o
n

01
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0 1
9

 A
ug

 9
6

1
4

 O
ct

9
 D

ec
3

 F
eb

3
1

 M
ar

2
6

 M
ay

2
1

 J
ul

D
a
t
e

Staff Months

R
e
w

o
r
k

D
e
v
e
l
o
p
m

e
n
t

S
ta

rt
 o

f
O

A
T

S
ta

rt
 o

f
S
/W

In
t

&
 T

es
t

S
ta

rt
 o

f
S
ys

In
t

&
 T

es
t

En
d
 o

f
O

A
T

R
i
d
g
w

a
y

A

F
B
:

M

A
P
S

D
a
t
a

a
s

o
f

1
7

F
e
b

9
7

T
e
s
t

P
r
o
g
r
e
s
s

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

1
9

 A
ug

 9
6

1
4

 O
ct

9
 D

ec
3

 F
eb

3
1

 M
ar

2
6

 M
ay

2
1

 J
ul

D
a
t
e

Number of Test Cases

P
l
a
n

A
t
t
e
m

p
t
e
d

P
a
s
s
e
d

S
ta

rt
 o

f
O

A
T

S
ta

rt
 o

f
S
/W

In
t

&
 T

es
t

S
ta

rt
 o

f
S
ys

In
t

&
 T

es
t

En
d
 o

f
O

A
T

R
i
d
g
w

a
y

A

F
B
:

M

A
P
S

D
a
t
a

a
s

o
f

1
7

F
e
b

9
7

F
i
g
u
r
e

3
-
4
.

I
n
c
r
e
m

e
n
t

2

R
e
a
d
i
n
e
s
s

f
o
r

T
e
s
t

Part 5 - Software Measurement Case Studies

Page { PAGE }

Problem Report Classific
Increment 2

29%

34%

23%

14%

0

50

100

150

200

250

300

350

400

450

500

Performance Logic Interfaces Other

Category

N
u

m
b

e
r

o
f

P
ro

b
le

m

R
e

p
o

rt
s

Ridgway AFB: MAP Data as of 17 Feb

Figure 3-5. Increment Problem Report Classification

Part 5 - Software Measurement Case Studies

Page { PAGE }

Part 5 - Software Measurement Case Studies

Page { PAGE }

CHAPTER 4 - INSTALLATION AND SOFTWARE
SUPPORT

With the development of the MAPS software proceeding according
to plan, Lt. Col. Thompson asked Jennifer to extend the
measurement process to track the progress of the fielding of the
Increment 1 Base-level systems at the various bases. This was
scheduled to occur throughout 1997, from January through October,
with delivery of the systems occurring at a relatively constant rate.

To support the installation process, a total of ten people were
assigned and divided into five teams. Each team was scheduled to
spend two weeks installing MAPS at each of the 100 base-level
sites. The work during the two week installation period included
data conversion, software installation, user training and user
support. After installation the MAPS development team would
provide support via a 24-hour help line. The planned called for each
site to concurrently run the existing military personnel system with
the newly installed MAPS for one week before shutting down the
old system completely. The 100 base-level sites included all Air
Force bases in the United States and overseas, Air Force Reserve
commands, and selected Air National Guard units.

4.1 INCREMENT 1 INSTALLATION

To address the installation progress question, Jennifer defined and
graphed a simple work unit progress indicator as depicted in Figure
4-1.

It's clear from the graph that the installations were behind schedule
almost from the start. Jennifer investigated and contacted each of
the installation teams to try and identify the causes for the delays.
She heard a consistent story. The old base-level system that MAPS
was replacing had very loose edit requirements.

Part 5 - Software Measurement Case Studies

Page { PAGE }

Installation Progr
Increment 1

0

20

40

60

80

100

120

1 Jan 97 26 Feb 23 Apr 18 Jun 13 Aug 8 Oct 3 Dec 28 Jan
98

25 Mar

Date

N
u

m
b

e
r

o
f

B
a

s
e

In

s
ta

ll
a

ti
o

n
s

P l a n
Actua l

Ridgway AFB: MAP Data as of 26 Feb

Figure 4-1. Increment 1 Installation Progress

It would accept almost any personnel data that was entered. The
result was that the data conversion software, which was written to
the MAPS data specifications, kept rejecting data that was in a
different format from what was expected. This was not an easy
problem to fix because each of the existing base-level databases was
different from the others. Jennifer showed Lt. Col. Thompson a
linear extrapolation of the actual installation data points. This is
shown in Figure 4-2. Based on the actual rate of progress, a total of
fifteen months was required to complete the installations, not ten
months as originally planned. The rate of base installation was
limited by the availability of teams. Based on the projection, Lt.
Col. Thompson decided to extend the installation schedule. He also
asked Jennifer to provide an update to the projection as more data
became available.

4.2 SOFTWARE SUPPORT

By November of 1997, sixty-eight of the 100 base-level sites had
been installed. As part of the measurement process, Jennifer had
been tracking and categorizing problem reports from the field.
Given the previous problems on the program, it was important to Lt.
Col. Thompson to address the user’s concerns.

Part 5 - Software Measurement Case Studies

Page { PAGE }

Installation Progr
Increment 1

0

20

40

60

80

100

120

1 Jan
97

26 Feb 23 Apr 18 Jun 13 Aug 8 Oct 3 Dec 28 Jan
98

25 Mar

Date

N
u

m
b

e
r

o
f

B
a

s
e

In

s
ta

ll
a

ti
o

n
s

P l a n
Actua l
Linear (Actu

Ridgway AFB: MAP Data as of 26 Feb

Figure 4-2. Increment 1 Projected Installation Completion

At the highest level, Jennifer classified the problem reports as being
related to hardware, software, or user error. She analyzed the
software-related problem reports in more detail by focusing on those
that were the result of defects in the design or the code. She
classified the problems as related to performance, logic, interfaces
with other systems, and other. The data coming in from the field
showed that the most frequent type of problem was related to logic
defects. This is shown in Figure 4-3.

Problem Report Classific
User Reported Problems

0

20

40

60

80

100

120

Performance Logic Interfaces Other
Category

N
u

m
b

e
r

o
f

P
ro

b
le

m

R
e

p
o

rt
s

Ridgway AFB: MAP Data as of 19 Nov

Figure 4-3. User Reported Problems

Part 5 - Software Measurement Case Studies

Page { PAGE }

Jennifer also decided to classify the problems according to their
source by identifying the CSCI which had to be changed in order to
correct the problem. She graphed the ratio of problem reports to
function points for each CSCI. The results were graphed as shown
in Figure 4-4. Jennifer found that the Unit Mobilization CSCI
accounted for a disproportionate number of the logic defects. There
was clearly a problem with this particular CSCI.

Problem Report Den
Increment 1

0.0

0.1

0.2

0.3

0.4

0.5

BPI BAS BAV BUT BUS BSC BPE BPR BUM BUR BCR BUP BPD
CSCI

P
ro

b
le

m

R
e

p
o

rt
s

p

e
r

F
u

n
c

ti
o

n

P
o

in
t

Ridgway AFB: MAP Data as of 19 Nov

Figure 4-4. Problem Report Density by CSCI

Lt. Col. Thompson asked Jennifer to compare how much effort was
being applied to correcting the problems, with what it would cost to
redesign and redevelop the Unit Mobilization CSCI. Jennifer
generated the graph shown in Figure 4-5, which reflected the effort
that was applied over a two-month period.

Jennifer noted that the Unit Mobilization CSCI required the
equivalent of three full-time staff members to support problem
resolution. She was surprised that there continued to be such a high
rate of newly discovered problems, particularly considering that the
Unit Mobilization CSCI had been in operational use for almost a
year. In talking with the lead programmer responsible for
maintaining the CSCI, she found that as existing problems were
corrected, new ones were being introduced. She decided to
compare the cost of continuing to maintain the CSCI as currently
implemented over a projected ten year period with the cost of
reengineering and maintaining a more reliable version of the CSCI.
(The screen and report generation functions did not need to be
changed).

Part 5 - Software Measurement Case Studies

Page { PAGE }

Rework Effo
By CSCI

Increment 1

0

1

2

3

4

5

6

BPI BAS BAV BUT BUS BSC BPE BPR BUM BUR BCR BUP BPD

CSCI

S
ta

ff

M
o

n
th

s

Ridgway AFB: MAP Data as of 19 Nov

Figure 4-5. Rework Effort by CSCI

Jennifer estimated that the cost of reengineering would be $1.2
million over a 10-month period, with estimated software support
costs of $800 thousand over the remaining nine year period. This
was compared to an estimated $3.0 million cost to maintain the
existing CSCI over the same ten year time frame. This comparison
was based on an average $100K cost per person year.

Lt. Col. Thompson decided to redesign the Unit Mobilization CSCI
and planned to release it in the next MAPS update scheduled for late
1998.

4.3 EPILOGUE

The MAPS development turned out to be a good example of
implementing a measurement process on an existing program. As
the program progressed, the data required to manage the key issues
was identified, collected, and analyzed. The measurement activity
was focused on the primary software issues. As such, a smaller
number of measures were actually implemented, to address
progress, cost, and quality concerns.

The measurement process was adapted to the specific characteristics
of the MAPS program. Measures better suited to AIS software,
such as Function Points, were implemented. By the end of the
MAPS development, the entire program team had seen how
measurement was useful in identifying and resolving both
management and technical problems.

Part 5 - Software Measurement Case Studies

Page { PAGE }

Action

Issues

Measures

Indicators

Analysis

Information

P RACTICAL
 S OFTWARE
 M EASUREMENT

SUPPLEMENTAL
INFORMATION
PART 6

Part 6 - Supplemental Information

Page 352

Part 6 - Supplemental Information

Page 353

SUPPLEMENTAL INFORMATION

This part of the PSM Guide provides supplemental information
that will assist you in locating specific topics within the Guide. It
provides more information about Practical Software
Measurement, including its applicability to DoD policies.

The topics covered in this part of the Guide include:

• Glossary - This section provides definitions of terms used
throughout the Guide.

• Acronyms - Acronyms used throughout the Guide are
defined in this section.

• Bibliography - Reference information and their respective
sources are provided in this section.

• PSM Relationship to Specific DoD Policies - This section
describes how PSM relates to key DoD measurement
related policies and initiatives.

• PSM Project Information Summary - A brief discussion of
the PSM project is provided in this section.

• Version Description Summary - This section provides the
version history of the PSM Guide and the changes that
have been made in each release of the document.

• Comment Form - Comments and suggestions concerning
the PSM Guide may be submitted using this form.

Part 6 - Supplemental Information

Page 354

Part 6 - Supplemental Information

Page 355

TABLE OF CONTENTS

GLOSSARY................................ 357

ACRONYMS................................ 365

BIBLIOGRAPHY................................ 367
Software Measurement References..367

Government Agency-Specific Software Measurement References...372

PSM RELATIONSHIP TO SPECIFIC DOD POLICIES................................ 373

PSM PROJECT INFORMATION SUMMARY................................ 377
Use of Practical Software Measurement..378

Project Contact Information..378

VERSION DESCRIPTION SUMMARY................................ 381

Part 6 - Supplemental Information

Page 356

Part 6 - Supplemental Information

Page 357

GLOSSARY

actual measure - See measured value.

aggregation level - The level at which measurement data is
combined for data reporting and analysis purposes. For example, to
analyze the amount of work effort expended over time, work effort
hours might be summed at the CSCI, build, or system levels. In
general, aggregations are related to either the software design
structure or to software activities. Aggregating data requires the
definition of the hierarchical relationships among the measured
items, such as is provided by a WBS.

application - In PSM, this term is used to refer to one of the two
basic measurement activities which comprise the software
measurement process. The application activity involves collecting,
analyzing, and acting upon the measurement data. See also tailoring
and implementation.

application software - Software specifically produced for the
functional use of a computer system, as opposed to system software;
for example, software for navigation, fire control, payroll, or general
ledger.

attribute - A characteristic of a product or process.

Automated Information System (AIS) - A combination of
computer hardware and software, data, or telecommunications, that
performs functions such as collecting, processing, transmitting, and
displaying information. Excluded are computer resources, both
hardware and software, that are physically part of, dedicated to, or
essential in real time to the mission performance of weapon systems.

Commercial Off-The-Shelf (COTS) - Commercial items that
require no unique government modifications or maintenance over the
life-cycle of the product to meet the needs of the procuring agency.

common issue - An issue that is basic or common to almost all
programs. PSM defines six common issues. See issue.

Computer Software Configuration Item (CSCI) - An aggregation
of software that satisfies an end use function and is designated for

Part 6 - Supplemental Information

Page 358

separate configuration management by the acquirer. CSCIs are
selected based on tradeoffs among software function, size, host or
target computers, support concept, plans for reuse, criticality,
interface considerations, need to be separately documented and
controlled, and other factors.

Cost/Schedule Control System Criteria (C/SCSC) - A set of DoD
requirements which defines what a contractor’s management control
system must have to qualify for bidding on selected military program
acquisitions. The criteria include: requirements for integrating cost,
schedule and technical performance measurements using the Work
Breakdown Structure (WBS); use of accrual accounting methods to
facilitate the analysis of variances from planned activities; and having
a means to estimate the cost of the contract at completion.

customer - The organization that procures software products for
itself or another organization. PSM generally considers the customer
to be the DoD program manager/program office.

cyclomatic complexity - A measure of the logical complexity of a
program module, based on the number of linearly independent paths
in the module. Used to evaluate code quality and to predict testing
effort.

defect - A product’s nonconformance with its specification; any error
in documentation, requirements design, code, test plans, or any other
work product. Defects are uncovered during reviews, testing, and
during operation.

developer - An organization that develops software products
(“develop” may include new development, modification, reuse,
reengineering, maintenance, or any other activity that results in
software products). The developer may be a contractor or a
Government agency.

development - The set of activities that result in software products,
including requirements analysis, design, implementation, and
integration and testing. This term is used throughout PSM to
describe the second of three phases in the software life cycle.

expected (or planned) value - Planned or historical measurement
data such as planned milestone dates, target level of reliability or
required productivity. See also measured value.

Part 6 - Supplemental Information

Page 359

failure - 1) Termination of the ability of a functional unit to perform
its required function; 2) an event in which the system or system
component does not perform a required function within specified
limits.

function points - Function Points are a software size measure. They
measure the amount of information processing functionality
contained within a software product. They are derived early in the
software life cycle from requirements or design specifications, and
are applied across diverse application domains and technology
platforms.

implementation - In PSM, this term is used to refer to the activities
required to establish a measurement process within an organization.
See also tailoring and application.

indicator - A measure or combination of measures that provides
insight into a software issue or concept. PSM makes frequent use of
indicators that are comparisons, such as planned versus actual
measures. These are generally presented as graphs or tables.

Indicators are used in two ways:

current indicator - An indicator that describes the current
situation with respect to an issue. For example, staffing level
reflects the variance between the number of personnel currently
assigned to the program and the number of personnel allocated in
the plan. Contrast with leading indicator.

leading indicator - An indicator that predicts the future situation
with respect to an issue. For example, requirement changes may
be a leading indicator for developer effort. Changes in
requirements usually result in a need for increased effort.
Contrast with current indicator.

There are two types of indicators:

limit-based indicator - An indicator whose expected or planned
value remains relatively constant. For example, actual software
size may be collected throughout a program and compared to a
planned limit (initial estimate plus acceptable variation). Contrast
with trend-based indicator.

Part 6 - Supplemental Information

Page 360

trend-based indicator - An indicator whose expected or planned
value changes over time. For example, progress might be tracked
using work units completed. A different goal for the number of
units completed would be set for each week and compared to
actual units completed over time. Contrast with limit-based
indicator.

instrumentation - Instructions inserted into software to monitor the
operation of a system or component or to collect measurement data.

issue - A risk, constraint, objective or concern, often associated with
resources, progress, productivity, or performance. Issues represent
current or potential problem areas that should be monitored.

low level data - Measures collected at the lowest component and
software activity levels as defined by the software architecture and
work breakdown structure.

masking - When a problem that should show up in one issue area is
disguised by an accommodation made in another issue area. For
example, an increase in applied effort is masked by concurrent
schedule slips so that increased effort does not result in a detectable
increase in staff level. Masking makes it harder for management to
recognize a problem.

measure - The result of counting or otherwise quantifying an
attribute of a process or product. Measures are numerical values
assigned to software attributes according to defined criteria.

measured (or actual) value - Actual, current measurement data
such as hours of effort expended or lines of code produced. See also
expected value.

measurement - The process of assigning numerical values to
software attributes according to defined criteria. This process can be
based on estimation or direct measurement. Estimation results in
planned or expected measures. Direct measurement results in actual
measures.

measurement analysis - The use of measurement data to identify,
assess, project, and evaluate software issues.

Part 6 - Supplemental Information

Page 361

feasibility analysis - Analysis conducted to determine whether
plans and targets are realistic or achievable; should be conducted
during the initial planning activity and at all subsequent replans.
Contrast with performance analysis.

performance analysis - Analysis conducted to determine
whether software development is meeting the plans, assumptions,
and targets; should be conducted continuously once a program
has committed to a plan. Contrast with feasibility analysis.

measurement analyst - The person(s) responsible for defining,
collecting, analyzing, and reporting software measures in a given
organization.

measurement category - A set of related measures. Each common
issue defined in PSM has one or more corresponding measurement
categories. Software measures which provide the same type of
information are grouped under each measurement category. Each
category answers different types of questions.

measurement data - A collection of measures.

measurement information - Knowledge derived from the analysis
of measurement data and indicators.

metric - See indicator.

milestone - A scheduled event for which some project member or
manager is held accountable and that is used to measure progress.

normalization - Combining or comparing measures from different
activities, different programs, or with different units of production.
For example, to compare the quality of work produced in two
programs, it would be necessary look at defect counts in relation to
the amount or size of the work produced. This often requires the
definition and validation of conversion rules and/or models.

problem report - A documented description of a defect, unusual
occurrence, observation, or failure that requires investigation and
may involve software modifications.

program manager - The government official responsible for
acquiring or supporting a system that meets technical, cost, schedule,

Part 6 - Supplemental Information

Page 362

and quality requirements. Acquisition and support includes both
internal and contracted tasks.

program planning - The set of activities involving the assessment
and selection of software develop(s) and the development of program
plans. This term is used throughout PSM to describe the first of
three phases in the software lifecycle.

repeatability - A ability of two analysts, performing the same
measurement analysis, to arrive at the same set of conclusions and
recommendations.

rework - Any effort (Also, any size changes necessary to accomplish
rework.) invested in reaccomplishing work already deemed complete.
Rework effort begins once a defect is found and continues until all of
the work required to obtain acceptance of the rework is complete.

rippling - When a problem that arises in one issue area may have a
ripple effect on another issue. For example, software size growth may
cause effort overruns. Rippling multiplies the effect of an issue.

risk - A subjective assessment made regarding the likelihood or
probability of not achieving a specific objective by the time
established with the resources provided or requested.

software activity - In PSM, this term is used to refer to the four key
subprocesses of the overall software process; requirements analysis,
design, implementation, and integration and test. Individual software
activities can take place at any point in the software life cycle in any
phase.

software component - A general term used to refer to a software
system or an element, such as unit, CSCI, object, or screen.

Software Engineering Process Group (SEPG) - The group of
specialists who facilitate the definition, maintenance, and
improvement of the software process used by the organization.

software manager - The person responsible for making the decisions
relating to the software issues. This could be the DoD Program
Manager or the developer’s program or technical manager.

Part 6 - Supplemental Information

Page 363

software program - The people, processes, and organizations
responsible for developing or supporting a software product as a
stand-alone item or as part of a larger system.

software support - The set of activities that takes place to ensure
that software installed for operational use continues to perform as
intended and fulfill its intended role in system operations. This term is
used throughout PSM to describe the third of three phases in the
software life cycle. Software development can take place during the
software support phase.

tailoring - In PSM, this term is used to refer to one of the three basic
measurement activities. The tailoring activity is part of the
measurement process and involves selecting an effective and
economical set of measures for a program. See also application and
implementation.

traceability - The ability to link conclusions and recommendations to
a defined sequence of steps.

weapon system - Items that can be used directly or indirectly by the
armed forces to carry out combat missions.

work breakdown structure (WBS) - A work breakdown structure
for software defines the software-related elements associated with
program activities. PSM refers to cost and effort measures which are
aggregated and analyzed at various WBS levels.

Part 6 - Supplemental Information

Page 364

Part 6 - Supplemental Information

Page 365

ACRONYMS

A&T Acquisition and Technology

AIS Automated Information System

C/SCSC Cost/Schedule Control System Criteria

C/SSR Cost/Schedule Status Reports

C4I Command, Control, Communications, Computer, and
Intelligence

CCDR Contractor Cost Data Report

CFSR Contract Funds Status Report

CMM Capability Maturity Model

COCOMO Constructive Cost Model

COTS Commercial Off the Shelf

CPR Cost Performance Report

CSCI Computer Software Configuration Item

DAB Defense Acquisition Board

DSMC Defense Systems Management College

DT&E Development, Test, and Evaluation

E&MD Engineering and Manufacturing Development

GAO General Accounting Office

GOTS Government Off the Shelf

IFPUG International Function Point User’s Group

IPPD Integrated Product and Process Development

IPT Integrated Product Team

ISSA Inter Service Support Agreement

JGSE Joint Group on Systems Engineering

Part 6 - Supplemental Information

Page 366

JLC Joint Logistics Commanders

LAN Local Area Network

MAISAP Major Automated Information System Acquisition
Program

MAISRC Major Automated Information System Review Council

MDAP Major Defense Acquisition Program

MIS Management Information System

MOA Memorandum of Agreement

MOU Memorandum of Understanding

NDI Non-Developed Item

OSA Open Systems Architecture

OSD Office of the Secretary of Defense

OT&E Operational Test and Evaluation

OUSD Office of the Under Secretary of Defense

PSM Practical Software Measurement

RFP Request for Proposal

SEI Software Engineering Institute

SEPG Software Engineering Process Group

SISMA Streamlined Integrated Software Metrics Approach

SPC Software Productivity Consortium

STEP Software Test and Evaluation Panel

WBS Work Breakdown Structure

Part 6 - Supplemental Information

Page 367

BIBLIOGRAPHY

This bibliography lists measurement references which augment or
support the guidance included in Practical Software Measurement.
Readers may wish to consult these resources for additional
information. The first section includes published measurement-
related books and reference manuals. Brief annotations are provided
that describe each reference. The second section includes government
agency-specific directives, instructions, reports, and standards which
address software measurement. The books are generally available
through most technical publishers and bookstores. Government
documents are available through the National Technical Information
Service, Springfield, VA 22161.

SOFTWARE MEASUREMENT REFERENCES

Baumert, John H., and Mark S. McWhinney, September 1992,
Software Measures and the Capability Maturity Model, CMU/SEI-
92-TR-25, ESC-TR-92-025, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA.

A reference which shows which software measures can reasonably be
expected at the various levels of SEI software process maturity. It includes
example graphs and advice on how to report specific measures.

Boehm, Barry W., 1981, Software Engineering Economics,
Englewood Cliffs, NJ: Prentice-Hall.

A primary reference in the field of software estimation and measurement.
This book provides detailed information on the COCOMO software
estimation model.

Brooks, Frederick O., Jr., 1975, The Mythical Man Month: Essays
on Software Engineering, Reading, MA: Addison-Wesley
Publishing Company.

A primary reference in the field of software engineering. This book relates
key lessons learned in managing a large software program, and provides an
overall perspective for the DoD program manager.

Carleton, Anita D., Robert E. Park, Wolfhart B. Goethert, William
A. Florac, Elizabeth K. Bailey, and Shari Lawrence Pfleeger,

Part 6 - Supplemental Information

Page 368

September 1992, Software Measurement for DoD Systems:
Recommendations for Initial Core Measures, CMU/SEI-92-TR-19,
ESC-TR-92-019, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA.

This reference provides recommendations and a rationale for the SEI
defined “Core Measures”. The Core Measures include size, effort,
schedule, and quality (measured in terms of defects and problem reports)
and address issues common to almost all software programs.

DeMarco, Tom, 1982, Controlling Software Projects:
Management, Measurement, and Estimation, New York: Yourdon
Press.

This reference provides practical guidance for collecting and analyzing
software measures.

Deming, W. Edwards, 1986, Out of the Crisis, Cambridge, MA:
Massachusetts Institute of Technology Center for Advanced
Engineering Study.

This book describes the quality crisis across a number of industries and
relates effective strategies for dealing with them. It focuses on the use of
Statistical Process Control techniques.

Dumke, Reiner R., 1993, Software Metrics: A Subdivided
Bibliography, Magdeburg, Germany: Technical University “Otto von
Guricke” of Magdeburg.

This bibliography provides a comprehensive guide to both research and
practical publications in software measurement. Entries are grouped by
topic.

Fenton, Norman E., 1991, Software Metrics: A Rigorous Approach,
London: Chapman & Hall.

This book advocates a rigorous approach to software measurement that is
based on fundamental measurement theory. It argues that much of modern
software measurement is flawed because it ignores measurement
fundamentals. This book gives the reader specific tools to overcome these
deficiencies and put a measurement program on solid theoretical ground.
This book is for the reader who desires a more theoretical treatment of
software measurement than is found in PSM.

Florac, William A., with the Quality Subgroup of the Software
Metrics Definition Working Group and the Software Process
Measurement Project Team, September 1992, Software Quality
Measurement: A Framework for Counting Problems and Defects,

Part 6 - Supplemental Information

Page 369

CMU/SEI-92-TR-22, ESC-TR-92-022, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA.

This reference provides a framework for counting problems and defects in
software and using them to assess quality, which is one of the SEI Core
Measures. It includes checklists that allow the reader to define how defects
are actively defined and counted.

Goethert, Wolfhart B., Elizabeth K. Bailey, Mary B. Busby, with the
Effort and Schedule Subgroup of the Software Metrics Definition
Working Group and the Software Process Measurement Project
Team, September 1992, Software Effort and Schedule
Measurement: A Framework for Counting Staff-Hours and
Reporting Schedule Information, CMU/SEI-92-TR-21, ESC-TR-
92-021, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA.

This reference provides frameworks for counting software staff-hours and
schedule, both of which are SEI Core Measures. It includes checklists that
allow the reader to define how staff-hours and schedule data are actively
defined and counted.

Grady, Robert B., and Deborah L. Caswell, 1987, Software Metrics:
Establishing a Company-Wide Program, Englewood Cliffs, NJ:
Prentice-Hall.

This book describes how Hewlett-Packard’s corporate measurement
program was implemented. It includes information on topics which range
from how to compute specific measures to how to sell a measurement
program to senior management.

Grady, Robert B., 1992, Practical Software Metrics for Project
Management and Process Improvement, Englewood Cliffs, NJ:
Prentice-Hall, Inc.

This book examines more detailed issues with respect to software
measurement and more specifically relates it to software process
improvement. It builds on information from the previous reference.

Hetzel, Bill, 1993, Making Software Measurement Work: Building
an Effective Measurement Program, Boston, MA: QED Publishing
Group.

This book addresses how to get measurement implemented in an
organization. It emphasizes fundamentals, explains how to begin, and
includes a list of measurement tools and services available at the time of
publication.

Part 6 - Supplemental Information

Page 370

Humphrey, Watts, 1989, Managing the Software Process, Addison
Wesley, New York.

This book describes the software process maturity levels developed by the
Software Engineering Institute at Carnegie Mellon University. It defines
each maturity level (e.g., Ad Hoc, Repeatable, Defined, etc.), and outlines
the criteria for distinguishing each one. This book contains the basis for,
and is a precursor to, SEI’s Capability Maturity Model.

The Institute of Electrical and Electronics Engineers, Inc., 1992,
IEEE Standard for Software Productivity Metrics, IEEE Std 1045-
1992, New York, NY.

This IEEE standard describes a variety of software measures that can be
used to consistently define software productivity. Detailed information is
provided for each of the more than thirty measures it contains.

International Function Points Users Group, 1994, Function Points
Counting Practices Manual, Westerville, OH.

This industry-established standard defines the rules for counting function
points. The document is updated periodically to account for advances in
function point technology and usage.

International Function Points Users Group, 1994, Guidelines to
Software Measurement, Westerville, OH.

This guidebook introduces the basic concepts of software measurement. It
describes how the measurement process fits into other software activities,
and provides guidance on implementing a measurement program. It reviews
product and process measures, discusses indicators, and examines ways to
use measurement results.

Jones, T. Capers, 1991, Applied Software Measurement, McGraw
Hill, New York.

This book describes various methods for measuring schedule, cost, and
quality of software projects. It discusses the major functional size metrics,
including DeMarco’s “Bang” metrics, function points, and feature points,
but focuses primarily on the use of function points. Productivity and quality
averages from Jones’ historical data base are included.

Musa, John D., Anthony Iannino, and Kazuhira Okumoto, 1987,
Software Reliability: Measurement, Prediction, Application, New
York, NY: McGraw-Hill Book Company.

This book discusses the theoretical and practical applications of software
reliability measurement. It defines software reliability, reviews and
compares the various reliability models, and describes how reliability
measurement can be used in systems engineering, project management, and
in the management of the operational phase of the software life cycle.

Part 6 - Supplemental Information

Page 371

Park, Robert E., with the Size Subgroup of the Software Metrics
Definition Working Group and the Software Process Measurement
Project Team, September 1992, Software Size Measurement: A
Framework for Counting Source Statements, CMU/SEI-92-TR-20,
ESC-TR-92-020, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA.

This reference provides a framework for counting source lines of code
(SLOC) and using it to assess software size, which is one of the SEI Core
Measures. It includes checklists that allow the reader to define how SLOC
are defined and counted.

Paulk, Mark C., Bill Curtis, Mary Beth Chrissis, and Charles V.
Weber, 1993, Capability Maturity Model for Software, Version 1.1,
CMU/SEI-93-TR-24, ESC-TR-93-177, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA.

This reference describes a software process maturity framework which forms
the basis for assessing the capability of a software organization. Five
maturity levels and the key practices within each level are described.

Putnam, Lawrence H. and Ware Myers, 1992, Measures for
Excellence: Reliable Software on Time, within Budget, Englewood
Cliffs, NJ: Prentice-Hall.

This book focuses primarily on using tools for automated size estimation and
project tracking, and also discusses life cycle models, life cycle
management, and productivity analysis. It includes observations about
patterns of software behavior based on Putnam’s historical data base of
software projects.

Schultz, Herman P., May 1988, Software Management Metrics,
M88-1, ESD-TR-88-001, The MITRE Corporation, Bedford, MA.

This reference is a relatively early work from a military software
measurement viewpoint. It provides an initial overview of selected software
management indicators.

Software Productivity Consortium, Software Measurement
Guidebook, SPC-91060-CMC, Version 02.01.00, August 1994,
Software Productivity Consortium, Herndon, VA.

This reference provides detailed information which helps to define and
interpret a software measurement process. It contains detailed guidance on
a number of software measures.

Part 6 - Supplemental Information

Page 372

GOVERNMENT AGENCY-SPECIFIC SOFTWARE MEASUREMENT REFERENCES

Department of the Air Force. Acquisition Management: Software
Management Indicators, AFP800-48, Washington, DC. June 1992.

Department of the Air Force. Software Technology Support Center.
Guidelines for Successful Acquisition and Management of
Software Intensive Systems: Weapon Systems, Command and
Control Systems, Management Information Systems, U.S. Air
Force STSC, Hill AFB, UT. February 1995.

Department of the Army. Communications-Electronics Command,
Research, Development and Engineering Center, Software
Engineering Directorate. Streamlined Integrated Software Metrics
Approach (SISMA) Guidebook: Application of STEP Metrics,
U.S. Army CECOM SED, Ft. Monmouth, NJ. July 1993.

Department of the Army. “Software Test and Evaluation
Guideline” Test and Evaluation Procedures and Guidelines, DA
Pamphlet 73-1, Washington, DC. June 1992.

Department of the Navy. Naval Aviation Systems Team. Software
Metrics Program Handbook, AVDEP-HDBK-7, U.S. Navy, Naval
Aviation Systems Team, Arlington, VA. November 1995.

Department of the Navy. Cruise Missile Project and Unmanned
Aerial Vehicles Joint Project. Software Metric Utilization
Guidance, PEO(CU)P 5234/2, June 1994.

Federal Aviation Administration. Software Engineering Specialty
Group. National Airspace System (NAS) Software Management
Indicators Handbook, FAA-SESG-HDBK-93.01, FAA SESG,
Washington, DC. November 1993.

Part 6 - Supplemental Information

Page 373

PSM RELATIONSHIP TO SPECIFIC DOD POLICIES

Practical Software Measurement was developed to help DoD
Program Managers address key software issues related to planning
and implementing a software intensive program. PSM is based on the
measurement experience of many DoD and industry organizations,
many of which are responsible for measurement policy and related
programs. The participation of these organizations in the
development of PSM helped to shape the guidance so that it
complements existing DoD measurement policies and initiatives.

The guidance contained in PSM focuses on defining and
implementing a practical measurement process. It explains how to
tailor software measures to address the specific issues of each
program, and how to apply the measures to support informed
software decision making. One of the primary goals in the
development of the PSM guidance was to ensure that it supported the
objectives and intent of current DoD policy. Since the PSM guidance
was developed using current measurement best practices, it is
important that it support the measurement initiatives which have
become accepted within the DoD software engineering community.

PSM’s relationship to key DoD software measurement related
policies and initiatives is described as follows:

DoD Directive 5000.1, “Defense Acquisition” and DoD
Instruction 5000.2, “Mandatory Procedures for Major Defense
Acquisition Programs (MDAPs) and Major Automated
Information System Acquisition Programs (MAISAPs)”, 1996

These DoD policies establish the requirement for DoD program
managers to provide periodic reports on the cost, schedule and
performance of their systems throughout the lifecycle. PSM helps the
program manager to implement a process for collecting and reporting
this information for software intensive systems.

Part 6 - Supplemental Information

Page 374

Secretary of Defense Memorandum of 10 May 1995, “Use of
Integrated Product and Process Development and Integrated
Product Teams in DoD Acquisition”

This memorandum from the Secretary of Defense requires the use of
Integrated Product and Process Development (IPPD) and Integrated
Product Teams (IPTs) throughout the acquisition process. The
IPPD/IPT management approach emphasizes the use of objective
information and associated measures within a cooperative framework
which involves all program participants. It also stresses open
communications within the program team to identify and resolve
problems. Within the IPT structure, PSM helps the Program
Manager to objectively identify and resolve program issues using
objective software information. The overall characteristics of the
PSM measurement process, including independent analysis,
continuous feedback, communications within the program team, and
the integration of measurement requirements into the developer’s
process, directly support the IPPD/IPT requirements.

OUSD/A&T Memorandum of 23 May 1994, “Development Test
and Evaluation (DT&E) Policy Guidance for Software-Intensive
Systems in Support of Recommendations from the General
Accounting Office (GAO)” and OSD/OT&E Memorandum of 31
May 1994, “Software Maturity Criteria for Dedicated
Operational Test and Evaluation of Software-Intensive Systems”

These policy memoranda require that every program define and
implement a set of software measures early in the program to help
determine when the system is ready for Operational Test and
Evaluation (OT&E). Commonly referred to as “maturity” measures,
those addressed in the policy include fault profile, cost, schedule,
requirements traceability, requirements stability, deficiency tracking,
and breath and depth of testing. The PSM guidance defines how to
implement a measurement process which will provide the required
maturity information. The PSM measurement selection guidance
includes measures which satisfy the maturity assessment
requirements.

Department of the Army Pamphlet 73-1, Part Seven (Draft),
“Software Test and Evaluation Guidelines”, 30 September 1992

Part 6 - Supplemental Information

Page 375

This Army policy memorandum defines a set of software measures
which must be applied to all Army software-intensive systems. This
policy resulted from the recommendations of the Army Software Test
and Evaluation Panel (STEP), which required the implementation of
twelve specific measures. These measures were not intended to be
tailored for each program. The original Army policy was revised in
1994. Although the 12 measures were still required, the revised
policy allowed the data elements to be tailored. The revised policy is
implemented in the current Army Metrics System. PSM is
complimentary with current Army measurement policy. The PSM
guidance helps Army Program Managers to implement a
measurement process to support the use of the twelve required
measures. PSM helps to select additional measures that the Program
Manager may require, and addresses associated analysis techniques.
The twelve Army measures are included in those listed in the PSM
measurement selection guidance.

Department of the Air Force Software Metrics Implementation
Policy (93M-017) of 17 February 1994

The Air Force measurement policy addresses the implementation of a
software measurement process to support overall program
management requirements. The policy also identifies five “core
metrics” which are aligned with issues common to all Air Force
programs. The five metrics include size, effort, schedule, quality, and
rework. The policy requires that each program measure all five, but
does not prescribe the actual measures to be used or associated
measurement methodologies. These five measures are addressed in
the PSM guidance. PSM also addresses the definition and
implementation of the software measurement process required by Air
Force policy.

Software Engineering Institute “Software Measurement for DoD
Systems: Recommendations for Initial Core Measures Core
Measures, 1992

In 1992 the Software Engineering Institute (SEI) published a series
of documents focused on the definition and use of four core software
measures. These measures include effort/staff hours, problems/
defects, size, and schedule. The SEI documents provide a detailed

Part 6 - Supplemental Information

Page 376

framework for defining and describing each measure, as well as
implementation and interpretation guidance. The core measures have
been widely adopted within DoD and industry. The SEI documents
can be used in conjunction with the PSM guidance, especially with
respect to integrating the core measures into the software process.
The SEI documents help to explicitly define how each of the
measures will be implemented.

Table 6-1 provides a summary of how Practical Software
Measurement supports the listed policies and initiatives.

Table 6-1. PSM Relationship to DoD Measurement Policies and Initiatives

Established by specific policy = N
PSM fills a requirement established by policy = P
PSM augments policy guidance = A

PSM Guidance
5000.1
5000.2

IPPD
IPT OSD Army

Air
Force SEI

Identify Program Specific Issues A A N N N A
Define Measures to be Collected P P A N A N
Integrate Measurement into
Software Process

P P P P P P

Put Measures on Contract P P P A P P
Provide Systematic Analysis
Process

P P P A P A

Provide Implementation
Guidance

P P P P P A

Part 6 - Supplemental Information

Page 377

PSM PROJECT INFORMATION SUMMARY

The development of Practical Software Measurement: A Guide to
Objective Program Insight (PSM) was sponsored by the Joint
Logistics Commanders (JLC) Joint Group on Systems Engineering
(JGSE). PSM was developed by a technical working group that
includes representatives from across the DoD and industry. PSM
represents the consensus of that community on the best practices for
software measurement.

The authors of PSM have benefited from the published research and
practical experience of many people outside of the technical working
group. However, the Guide is a “user’s manual” for software
measurement, not a survey of the research literature. Consult the
bibliography for more background on the theory and origin of the
basic measurement concepts integrated into PSM.

The Guide is the centerpiece of a family of products intended to help
transition software measurement into practice within the DoD. PSM
products currently available, or scheduled for delivery this year,
include the following:

• PSM Management Summary - a short synopsis of the
PSM approach intended to motivate managers to adopt
software measurement.

• PSM Guide (Version 2.0) - the Guide explains the basic
concepts of the software measurement process, offers
detailed implementation guidance, and provides realistic
case studies of software measurement use.

• PSM Insight - a Microsoft Access-based tool for
tailoring and applying software measures for a specific
program. The automated functions follow the PSM
defined measurement process.

• PSM Overview Course - a one-day course that
introduces the PSM principles and approach, and explains
how to use the PSM Guide.

• PSM Train-the-Trainers Course - a three-day course
that explains how to teach the PSM Overview Course
and how to use PSM Insight.

Part 6 - Supplemental Information

Page 378

• PSM Orientation - a two-hour overview of PSM
principles and concepts.

In addition to these products, the PSM development team is also
available to assist in applying PSM to actual programs and projects.

The PSM Technical Working Group (TWG) is developing guidance
that will address the application of software measurement to process
improvement and product engineering. Participation in the TWG is
open to all. We encourage you to join and share your experience.

USE OF PRACTICAL SOFTWARE MEASUREMENT

One of the primary purposes of Practical Software Measurement: A
Guide to Objective Program Insight, is to encourage the widespread
implementation of software measurement throughout the DoD and
industry. The information included in the Guide was developed by a
group of measurement professionals who gave much of their own
time and effort to help meet this objective.

We encourage you to make direct use of the material contained in
Practical Software Measurement. We ask that you acknowledge the
source of the information as:

Practical Software Measurement: A Guide to Objective
Program Insight, Version 2.0, January 26, 1996.

Additional copies of this Guide are available in hard cover and
electronic formats. Reproducible master copies are also available.

PROJECT CONTACT INFORMATION

Practical Software Measurement: A Guide to Objective Program
Insight, is intended for those DoD acquisition and development
organizations who need to more objectively plan, implement, control,
and evaluate their software programs.

Part 6 - Supplemental Information

Page 379

If you would like more information on using Practical Software
Measurement for your program, please contact:

John McGarry
Naval Undersea Warfare Center
Code 2252
1176 Howell Street
Newport, RI 02841

(401) 841-4581 (Voice)
(401) 84-12130 (FAX)
DSN Prefix 948
mcgarry@ada.npt.nuwc.navy.mil

Part 6 - Supplemental Information

Page 380

Part 6 - Supplemental Information

Page 381

VERSION DESCRIPTION SUMMARY

Date Version Change Description or
Comments

April 12, 1995 1.0 Initial coordination draft.
June 30, 1995 1.1 Editorial updates
January 26,
1996

2.0 Additional detail added throughout
the Guide; AIS Case Study added
to Part 5.

Part 6 - Supplemental Information

Page 382

Practical Software Measurement Guide
Evaluation and Comment Form

We welcome any comments that will help us improve Practical Software Measurement. Please provide your
inputs via hardcopy or email using the information format provided below.

Holly G. Mills Phone: (407) 984-3370
Software Productivity Solutions, Inc. FAX: (407) 728-3957
122 4th Avenue email: hgm@sps.com
Indialantic, FL 32903

Name Date
Organization

Street Address

E-mail Address

Telephone Fax

Version of PSM Reviewed 2.0

Part Commented On:
() The Software Measurement Process () Acquisition and Contract Implementation

Guidance
() Selecting and Specifying Program Measures () Software Measurement Case Studies
() Analysis Techniques and Examples () Supplemental Information

() Check here if you want to receive updates to the Guide

Overall value: Explanation:
() Excellent

() Good

() Fair

() Not Useful

General Comments:
 _

 __

Specific Comments on Sections:

Section: Page # Comments:

Part 6 - Supplemental Information

Page 384

Use additional sheets if more space is needed.

	PRACTICAL SOFTWARE MEASUREMENT
	FOREWORD
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	Software Measurement Principles
	SCOPE AND STRUCTURE OF THE GUIDE
	PART 1 - THE SOFTWARE MEASUREMENT PROCESS
	THE SOFTWARE MEASUREMENT PROCESS
	TABLE OF CONTENTS
	CHAPTER 1 - PROGRAM MANAGEMENT AND THE MEASUREMENT PROCESS
	1.1 MANAGING A SOFTWARE INTENSIVE PROGRAM
	1.2 OVERVIEW OF MEASUREMENT PROCESS
	1.3 SOFTWARE MEASUREMENT PRINCIPLES
	1.3.1 Program Issues and Objectives
	1.3.2 Developer’s Software Process
	1.3.3 Low Level Data
	1.3.4 Independent Analysis Capability
	1.3.5 Structured Analysis Process
	1.3.6 Results in Program Context
	1.3.7 Life Cycle Integration
	1.3.8 Objective Communications
	1.3.9 Single-Program Analysis

	1.4 MEASUREMENT IMPLEMENTATION CONSIDERATIONS

	CHAPTER 2 – TAILORING SOFTWARE MEASURES
	2.1 MEASUREMENT TAILORING OVERVIEW
	2.2 IDENTIFY AND PRIORITIZE PROGRAM ISSUES
	2.2.1 Program-Specific Issues
	2.2.2 Common Software Issues
	2.2.3 Identifying Program Issues
	2.2.4 Prioritizing Program Issues

	2.3 SELECT AND SPECIFY PROGRAM MEASURES
	2.3.1 Measurement Category Selection
	2.3.2 Measurement Selection Criteria
	2.3.3 Specifying Data and Implementation Requirements

	2.4 INTEGRATE MEASURES INTO THE DEVELOPER 'S PROCESS
	2.4.1 Characterizing the Software Environment
	2.4.2 Identifying Measurement Opportunities
	2.4.3 Developing a Software Measurement Plan

	CHAPTER 3 – APPLYING SOFTWARE MEASURES
	3.1 COLLECT AND PROCESS DATA
	3.1.1 Data Sources
	3.1.2 Reporting and Processing
	3.1.3 Normalization and Aggregation
	3.1.4 Data Verification

	3.2 DEFINE AND GENERATE INDICATORS
	3.2.1 Basic Indicator Concepts
	3.2.2 Types of Indicators
	3.2.2.1 Trend-Based Indicators
	3.2.2.2 Limit-Based Indicators

	3.3 ANALYZE ISSUES
	3.3.1 Basic Analysis Process
	3.3.1.1 Identification of Problems
	3.3.1.2 Assessment of Problem Impact
	3.3.1.3 Projection of Outcome
	3.3.1.4 Evaluation of Alternatives

	3.3.2 Feasibility Analysis
	3.3.3 Performance Analysis

	3.4 REPORT RESULTS
	3.5 TAKE ACTION
	3.6 LIFE CYCLE APPLICATION
	3.6.1 Program Planning
	3.6.2 Development
	3.6.3 Software Support

	CHAPTER 4 - IMPLEMENTING A MEASUREMENT PROCESS
	4.1 MEASUREMENT IMPLEMENTATION OVERVIEW
	4.2 MEASUREMENT IMPLEMENTATION ACTIVITIES
	4.2.1 Obtain Organizational Support
	4.2.2 Define Measurement Responsibilities
	4.2.3 Provide Measurement Resources
	4.2.3.1 Measurement Tools
	4.2.3.2 Measurement Training

	4.2.4 Initiate the Measurement Process

	4.3 USING THE MEASUREMENT RESULTS
	4.3.1 Program Development Viewpoint
	4.3.2 DoD Executive Management Viewpoint
	4.3.3 Process Improvement Viewpoint
	4.3.4 Lessons Learned

	PART 2 - SELECTING AND SPECIFYING PROGRAM MEASURES
	SELECTING AND SPECIFYING PROGRAM MEASURES
	TABLE OF CONTENTS
	CHAPTER 1- HOW TO SELECT AND SPECIFY PROGRAM MEASURES
	1.1 INTRODUCTION
	1.2 IDENTIFYING AND PRIORITIZING PROGRAM ISSUES
	1.3 SELECTING THE APPROPRIATE MEASUREMENT CATEGORIES
	1.4 SELECTING THE APPLICABLE MEASURES
	1.5 SPECIFYING MEASUREMENT DATA AND IMPLEMENTATION REQUIREMENTS
	1.6 SELECTING AND SPECIFYING MEASURES FOR EXISTING PROGRAMS

	CHAPTER 2 – DETAILED MEASUREMENT SELECTION AND
	2.1 INTRODUCTION
	2.2 HOW TO USE THE MEASUREMENT TABLES
	2.2.1 Measurement Category Tables
	2.2.2 Measurement Description Tables
	2.2.3 General Measurement Specification Table
	2.2.4 Additional Implementation Guidance
	2.2.5 Measurement Selection and Specification Tables

	Measurement Category -General Measurement Specification Measurement Category - All Issue
	Measurement Category - Milestone Performance Issue - Schedule and Progress
	Measure - Milestone Dates Measurement Category - Milestone Performance Issue - Schedule and Progress

	Measurement Category - Work Unit Progress Issue - Schedule and Progress
	Measure - Components Designed Measurement Category - Work Unit Progress Issue - Schedule and Progress
	Measure - Components Implemented Measurement Category - Work Unit Progress Issue - Schedule and Progress
	Measure - Components Integrated and Tested Measurement Category - Work Unit Progress Issue - Schedule and Progress
	Measure - Requirements Allocated Measurement Category - Work Unit Progress Issue - Schedule and Progress
	Measure - Requirements Tested Measurement Category - Work Unit Progress Issue - Schedule and Progress
	Measure - Test Cases Completed Measurement Category - Work Unit Progress Issue - Schedule and Progress
	Measure - Paths Tested Measurement Category - Work Unit Progress Issue - Schedule and Progress
	Measure - Problem Reports Resolved Measurement Category - Work Unit Progress Issue - Schedule and Progress
	Measure - Reviews Completed Measurement Category - Work Unit Progress Issue - Schedule and Progress
	Measure - Changes Implemented Measurement Category - Work Unit Progress Issue - Schedule and Progress

	Measurement Category - Schedule Performance Issue - Schedule and Progress
	Measure - Schedule Variance Measurement Category - Schedule Performance Issue - Schedule and Progress

	Measurement Category - Incremental Capability Issue - Schedule and Progress
	Measure - Build Content - Component Measurement Category - Incremental Capability Issue - Schedule and Progress
	Measure - Build Content - Function Measurement Category - Incremental Capability Issue - Schedule and Progress

	Measurement Category - Effort Profile Issue
	Measure - Effort Measurement Category - Effort Profile Issue - Resources and Cost

	Measurement Category - Staff Profile Issue - Resources and Cost
	Measure - Staff Level Measurement Category - Staff Profile Issue - Resources and Cost
	Measure - Staff Experience Measurement Category - Staff Profile Issue - Resources and Cost
	Measure - Staff Turnover Measurement Category - Staff Profile Issue - Resources and Cost

	Measurement Category - Cost Performance Issue - Resources and Cost
	Measure - Cost Variance
	Measure - Cost Profile Measurement Category - Cost Performance Issue - Resources and Cost
	Measure - Environmental Availability Issue - Resources and Cost
	Measure - Resource Availability Dates Measurement Category - Environment Availability Issue - Resources and Cost
	Measure - Resource Utilization Measurement Category - Environment Availability Issue - Resources and Cost

	Measurement Category - Product Size and Stability Issue - Growth and Stability
	Measure - Lines of Code
	Measure - Number of Components Measurement Category - Product Size and Stability Issue - Growth and Stability
	Measure - Words of Memory Measurement Category - Product Size and Stability Issue - Growth and Stability
	Measure - Database Size Measurement Category - Product Size and Stability Issue - Growth and Stability

	Measurement Category - Functional Size and Stability Issue - Growth and Stability
	Measure - Requirements Measurement Category - Functional Size and Stability Issue - Growth and Stability
	Measure - Function Points Measurement Category - Functional Size and Stability Issue - Growth and Stability

	Measurement Category - Target Computer Resource Utilization
	Measure - CPU Utilization Measurement Category - Target Computer Resource Utilization Issue - Growth and Stability
	Measure - CPU Throughput Measurement Category - Target Computer Resource Utilization Issue - Growth and Stability
	Measure - I/O Utilization Measurement Category - Target Computer Resource Utilization Issue - Growth and Stability
	Measure - I/O Throughput Measurement Category - Target Computer Resource Utilization Issue - Growth and Stability
	Measure - Memory Utilization Measurement Category - Target Computer Resource Utilization Issue - Growth and Stability
	Measure - Storage Utilization Measurement Category - Target Computer Resource Utilization Issue - Growth and Stability
	Measure - Response Time Measurement Category - Target Computer Resource Utilization Issue - Growth and Stability

	Measurement Category - Defect Profile Issue - Product Quality
	Measure - Problem Report Trends Measurement Category - Defect Profile Issue - Product Quality
	Measure - Problem Report Aging Measurement Category - Defect Profile Issue - Product Quality
	Measure - Defect Density Measurement Category - Defect Profile Issue - Product Quality
	Measure - Failure Interval Measurement Category - Defect Profile Issue - Product Quality

	Measurement Category - Complexity Issue - Product Quality
	Measure - Cyclomatic Complexity Measurement Category - Complexity Issue - Product Quality

	Measurement Category - Process Maturity Issue - Development Performance
	Measure - Capability Maturity Model Level Measurement Category - Process Maturity Issue - Development Performance

	Measurement Category - Productivity Issue - Development Performance
	Measure - Product Size/Effort Ratio Measurement Category - Productivity Issue - Development Performance
	Measure - Functional Size/Effort Ratio Measurement Category - Productivity Issue - Development Performance

	Measurement Category - Rework Issue - Development Performance
	Measure - Rework Size Measurement Category - Rework Issue - Development Performance
	Measure - Rework Effort Measurement Category - Rework Issue - Development Performance

	Measurement Category - Technology Impacts Issue - Technical Adequacy

	CHAPTER 3 – MEASUREMENT SELECTION AND
	3.1 PROGRAM SCENARIO
	3.2 MEASUREMENT SELECTION SUMMARY

	PART 3 - ANALYSIS TECHNIQUES
	ANALYSIS TECHNIQUES AND EXAMPLES
	TABLE OF CONTENTS
	CHAPTER 1 – MEASUREMENT APPLICATION OVERVIEW
	1.1 COLLECT AND PROCESS DATA
	1.2 DEFINE AND GENERATE INDICATORS
	1.3 ANALYZE ISSUES
	1.4 REPORT RESULTS
	1.5 TAKE ACTION

	CHAPTER 2 – INDICATOR REPRESENTATION
	CHAPTER 3 – SINGLE INDICATOR EXAMPLES
	3.X INDICATOR NAME
	3.1 MILESTONE PROGRESS INDICATOR
	3.2 DESIGN PROGRESS INDICTOR
	3.3 SCHEDULE VARIANCE INDICATOR
	3.4 INCREMENTAL BUILD CONTENT INDICATOR
	3.5 EFFORT ALLOCATION INDICATOR
	3.6 STAFF EXPERIENCE INDICATOR
	3.7 COST PROFILE INDICATOR
	3.8 RESOURCE UTILIZATION INDICATOR
	3.9 SOFTWARE SIZE INDICATOR
	3.10 REQUIREMENTS STABILITY INDICATOR
	3.11 RESPONSE TIME INDICATOR
	3.12 PROBLEM REPORT STATUS INDICATOR
	3.13 PROBLEM REPORT AGING INDICATOR
	3.14 DEFECT DENSITY INDICATOR
	3.15 SOFTWARE COMPLEXITY INDICATOR
	3.16 SOFTWARE PROCESS MATURITY INDICATOR
	3.17 SOFTWARE PRODUCTIVITY INDICATOR
	3.18 REWORK EFFORT INDICATOR
	3.19 SOFTWARE ORIGIN INDICATOR

	CHAPTER 4 – INTEGRATED INDICATOR EXAMPLES
	4.1 DESIGN COMPLETION ANALYSIS
	4.2 TEST COMPLETION ANALYSIS
	4.3 READINESS FOR DELIVERY ANALYSIS
	4.4 MAINTENANCE ANALYSIS

	PART 4 - ACQUISITION AND CONTRACT IMPLEMENTATION GUIDANCE
	ACQUISITION AND CONTRACT IMPLEMENTATION GUIDANCE
	TABLE OF CONTENTS
	CHAPTER 1 – CONTRACT IMPLEMENTATION GUIDANCE
	1.1 CONTRACT PLANNING AND PREPARATION
	1.2 PROPOSAL EVALUATION
	1.3 NEGOTIATIONS
	1.4 CONTRACT MODIFICATIONS

	CHAPTER 2– SAMPLE RFP WORDING
	CHAPTER 3 – ADDITIONAL SAMPLE MATERIAL

	PART 5 - SOFTWARE MEASUREMENT CASE STUDIES
	MEASUREMENT CASE STUDIES
	PART 5A - WEAPONS SYSTEM CASE STUDY
	WEAPONS SYSTEM CASE STUDY
	CHAPTER 1 - PROGRAM OVERVIEW
	1.1 INTRODUCTION
	1.2 PROGRAM TECHNICAL APPROACH
	1.2.1 System Requirements Definition and Design Analysis
	1.2.2 DDG 51 C 4 I Baseline System Description
	1.2.3 System Requirements and Design Recommendations

	1.3 PROGRAM MANAGEMENT APPROACH

	CHAPTER 2 - PROGRAM PLANNING AND ACQUISITION
	2.1 SOFTWARE PROGRAM PLANNING
	2.2 SOFTWARE ACQUISITION
	2.2.1 Request for Proposal
	2.2.2 Proposal Evaluation
	2.2.3 Award
	2.2.4 Negotiations

	CHAPTER 3 - DEVELOPMENT PHASE
	3.1 TRACKING DEVELOPMENT PERFORMANCE
	3.1.1 Software Measurement Overview
	3.1.2 Software Issue Identification and Analysis

	3.2 Revising The Development Plan
	3.3 SOFTWARE DELIVERY
	3.4 EPILOGUE

	PART 5B - AUTOMATED INFORMATION SYSTEM CASE STUDY
	AUTOMATED INFORMATION SYSTEM CASE STUDY
	CHAPTER 1 - PROGRAM OVERVIEW
	1.1 INTRODUCTION
	1.2 AIR FORCE BUSINESS PROCESS MODERNIZATION INITIATIVE
	1.3 PROGRAM DESCRIPTION
	1.4 SYSTEM ARCHITECTURE AND FUNCTIONALITY
	1.4.1 Current Personnel System
	1.4.2 Military Automated Personnel System (MAPS)

	CHAPTER 2 - GETTING THE PROGRAM UNDER CONTROL
	2.1 EVALUATING THE SOFTWARE DEVELOPMENT PLAN
	2.2 REVISING THE SOFTWARE DEVELOPMENT PLAN
	2.3 TRACKING PERFORMANCE AGAINST THE REVISED PLAN

	CHAPTER 3 - EVALUATING READINESS FOR DELIVERY
	3.1 INCREMENT 1
	3.2 INCREMENT 2

	CHAPTER 4 - INSTALLATION AND SOFTWARE SUPPORT
	4.1 INCREMENT 1 INSTALLATION
	4.2 SOFTWARE SUPPORT
	4.3 EPILOGUE

	PART 6 - SUPPLEMENTAL INFORMATION
	SUPPLEMENTAL INFORMATION
	TABLE OF CONTENTS
	GLOSSARY
	ACRONYMS
	BIBLIOGRAPHY
	SOFTWARE MEASUREMENT REFERENCES
	GOVERNMENT AGENCY-SPECIFIC SOFTWARE MEASUREMENT REFERENCES

	PSM RELATIONSHIP TO SPECIFIC DOD POLICIES
	PSM PROJECT INFORMATION SUMMARY
	USE OF PRACTICAL SOFTWARE MEASUREMENT
	PROJECT CONTACT INFORMATION

	VERSION DESCRIPTION SUMMARY
	Practical Software Measurement Guide Evaluation and Comment Form

