The Software Measurement Process�

1.0 Background

	Measurement is a key element of successful management in every well established engineering discipline. Practical Software Measurement (PSM) presents a proven approach for tailoring, applying, and implementing an effective measurement process for DoD software intensive Weapons System and Automated Information System (AIS) programs. The objective is to provide the DoD Program Manager with the software information required to make informed decisions which impact program cost, schedule, and technical objectives.

	PSM describes software measurement as a systematic, but flexible process which is an integral part of the overall program management structure. The PSM measurement process is issue driven. It is uniquely adapted to meet each program's specific information needs. The process is defined around a set of proven characteristics derived from actual experience on DoD and industry programs. These characteristics, called software measurement principles, help to make the PSM measurement process an effective management tool, and not just another program management "requirement".

	The first part of the Practical Software Measurement technique describes a comprehensive view of the complete measurement approach in terms of "what" should be done. Other parts of the technique address the detailed "how to" guidance for the key measurement activities described for the first part.

	The PSM measurement process provides the foundation for making informed "software" program management decisions. It describes how to define and integrate program measurement requirements, how to collect and analyze measurement data, and how to implement the overall process into your organization.

1.1 Managing a Software Intensive Program

	Much of the capability in today's DoD Weapons and Automated Information Systems is implemented with software. In the current acquisition environment, the ability of the Program Manager to effectively manage the critical software issues has become an important factor in a program's success. With the reductions in available resources and the use of new software technologies, the ability to successfully deliver a large and complex software system is increasingly challenging. New methods are required to help the DoD Program Manager plan, monitor and control the software processes and products which are now a large part of every program.

	In both the DoD and in industry, software measurement has proven to be an effective tool in helping to manage software intensive programs. Software measurement, when integrated into the overall program management process, provides the information necessary to identify and manage the software issues which are inherent in every program. It helps the Program Manager identify specific problems; assess the impacts of these problems on program cost, schedule, and performance objectives; develop alternative solutions; and select the best approach for correcting the problems. Software measurement provides the insight a Program Manager needs to make the software decisions critical to program success.

	Why should a Program Manager measure software?

		Recent changes in the DoD acquisition process have emphasized the need for better software management tools and techniques. Emphasis on the use of Commercial Off the Shelf (COTS) and reusable software components, and the implementation of Open System Architectures (OSA), is changing the way software is acquired and how systems are developed. New technologies and development processes require that the Program Manager have better, and more objective software information to help make the day to day decisions which guide the program. The Integrated Product Team (IPT) approach is an effective technique for managing large DoD systems. Software measurement provides the objective information which is essential for IPTs.

		Software measurement helps the DoD Program Manager do a better job. It helps to define and implement more realistic software plans, and then to accurately monitor progress against those plans. It provides the information required to make key program decisions and take appropriate action. Specifically, software measurement provides objective software information to help the Program Manager:

		Communicate effectively throughout the program organization - This is one of the key benefits of software measurement. Objective software information reduces the ambiguity which generally surrounds the software issues on a DoD program. Measurement allows the software issues to be explicitly identified, prioritized, and shared at all levels of the organization, particularly between the Program Manager and the developer.

		Identify And Correct Problems Early - Rather than waiting for something bad to happen, measurement implements a pro-active software management strategy. As part of the day to day program management process, measurement focuses on the early discovery and correction of software technical and management problems which are more difficult to address later in the program. Measurement helps the Program Manager focus on the key software issues throughout the program life cycle.

	Make the Key Tradeoffs - Every program is constrained to some degree. Development schedules, resources, and system capability requirements all have to be managed together to make the program a success. With software intensive programs, decisions in one area always have an impact on the others. Measurement allows the Program Manager to objectively assess these impacts, and make the proper tradeoff decisions to best meet program objectives. Even in a highly constrained software environment, measurement helps to identify and manage to an optimized set of objectives.

	Track to Specific Program Objectives - Measurement, better than any other software management tool, accurately describes the status of the software processes and products. It objectively represents the progress of the software activities and the quality of the software products. It helps to answer key questions such as, Is the development on schedule? and Is the software ready to deliver?

	Defend and Justify Decisions - The current DoD acquisition environment emphasizes successful program performance. A decreasing tolerance for failing programs, coupled with the need to accurately evaluate the performance of all government initiatives, requires that the Program Manger be able to effectively defend and justify his decisions. Measurement helps to do this. It provides the data required to explain how the issues were prioritized and managed.

1.2 Overview of the Software Measurement Process

	How does an organization that wants to take advantage of the benefits of software measurement proceed? A number of specific measurement prescriptions have been offered to government and industry organizations with limited success. Rather than propose another fixed measurement scheme, the PSM presents a flexible measurement approach. PSM views measurement as a process that must be adapted to the technical and management characteristics of each program. This measurement process is issue-driven. That is, it provides information about the specific issues and objectives important to program success.

	The PSM approach defines three basic measurement activities necessary to get measurement into practice. The first two activities, 1) Tailoring measures. Address program needs and 2) applying measures to obtain insight into the program issues. The third activity, 3) implementing measurement, includes the tasks necessary to establish this measurement process within an organization.

	

	The measurement process must be integrated into the developer's software process. The nature of the developer's process determines the opportunities for measurement. Because the software process, itself, is dynamic-the measurement process also must change and adapt as the program evolves. This makes the activities of measurement tailoring and application iterative throughout the program life cycle. The issues, measures, and analysis techniques change over time to best meet the program's information needs.

1.3 Software Measurement Principles

	Each program is described by different management and technical characteristics, and by a specific set of software issues. To address the unique measurement requirements of each program, PSM explains how to tailor and apply a generally defined software measurement process to meet specific program information needs. To help do this, PSM provides nine principles that define the characteristics of an effective measurement process. These principles are based upon actual measurement experience on successful programs and are:

1) Program issues and objectives drive the measurement requirements.

2) The developer's process defines how the software is actually measured.

3) Collect and analyze low level data.

4) Implement an independent analysis capability.

5) Use a structured analysis process to trace the measures to the decisions.

6) Interpret the measurement results in the context of other program information.

7) Integrate software measurement into the program management process throughout the software life cycle.

8) Use the measurement process as a basis for objective communications.

9) Focus initially on single program analysis.

1.3.1 Program Issues and Objectives

	Program issues and objectives drive the measurement requirements. The purpose of software measurement is to help management achieve program objectives, identify and track risks, satisfy constraints, and recognize problems early. These management concerns are referred to, collectively, as issues.

	

	Note that issues are not necessarily problems, but rather they define areas where problems may occur. An initial set of issues are identified at the outset of the program. This issue set evolves and changes as the program progresses.

	

	PSM emphasizes identifying program issues at the start of a program and then using the measurement process to provide insight to those issues. While some issues are common to most or all programs, each program typically has some unique issues. Moreover, the priority of issues usually varies from program to program.

	The six common software issues addressed in this document are as follows:

	1) Schedule and Progress

	2) Resources and Cost

	3) Growth and Stability

	4) Product Quality

	5) Development Performance

	6) Technical Adequacy

	At the start of a program or when major changes are implemented, each of these issues is analyzed in terms of the feasibility of the plan. For example, the Program Manager may ask questions such as: Is this a reasonable size estimate? or, Can the software be completed with the proposed amount of effort and schedule? Once the program is underway, the manager's concern turns to performance. The key questions then become ones such as: Is the program on schedule? or, Is the quality good enough?

	

	It is important to note that software issues are not independent. For example, requirements growth may result in schedule delays or effort over-runs. Moreover, the impact of the addition of work to a program (size growth) may be masked, in terms of level of effort, by stretching out the schedule. Thus, it is important that issues be considered together, rather than individually, to get a true understanding of program status.

1.3.2 Developer's Software Process

	The developer’s software process defines how the software is actually measured. The definition of a measurement process cannot be based solely on the objectives of the Program Manager. To collect measurement data in the most cost effective and useful manner, the measurement analyst must consider the software process of the developer. Program issues identify the information that the measurement process must derive from the data. The developer’s software process determines what specific data items are to be collected and how that is to be accomplished.

	

	One purpose of the measurement process is to provide insight into the performance of the developer. Thus, the measures collected must objectively represent the activities and products of the developer’s software process. The Program Manager should select measures that are normally collected by the software developer. This decision should also consider the software processes employed by any subcontractors.

1.3.3 Structured Analysis Process

	Use a structured analysis process to trace the measures to the decisions. Measurement based conclusions and recommendations must be generated in a systematic manner to be accepted as a basis for management decision-making and action. Key concerns of management about such information is its traceability and repeatability. Traceability means that the conclusions and recommendations are generated from measurement data in a defined sequence of steps. Repeatability means that analysts following the same sequence of steps are likely to arrive at the same conclusions and recommendations. An ad-hoc analysis approach does not provide management with the confidence necessary to act on measurement information. For measurement to succeed, management must become an active participant in the measurement process and a regular consumer of measurement results.

	A measure is a method of counting or otherwise quantifying some attribute of a software process or product. Measures alone do not provide much insight into issues. For example, two major deliverables of the typical program are software and documentation. Measuring the amount of software and documentation completed gives a sense that work is progressing; however, without comparing the work performed with the plan, we cannot tell whether the work is on schedule. Measures are used as indicators of software development and support status. These indicators provide insight into key program issues.

1.3.4 Program Context

	Interpret the measurement results in the context of other program information. Measurement provides an indication or warning that a problem may exist. No measurement result by itself is good or bad. For example, assume that the number of unit designs completed to date is lower than planned. This situation might occur because the program is not fully staffed, but while there is still time to add staff and recover. It might occur while the program is fully staffed because the developers productivity is much lower than planned. The variance between planned and actual values on a progress indicator does not necessarily mean that the program has a problem. However, it does signal that the Program Manager should pay attention to this issue now. He must collect additional information to evaluate the cause and severity of the situation to assess its probable impact on program success. Measurement results must be examined in the context of other information about the program to determine whether action is warranted, and what action to take.

1.3.5 Life Cycle Integration

	Integrate software measurement into the program management process throughout the life cycle. The issue-driven software measurement approach described in Practical Software Measurement applies throughout the software life cycle. For purposes of this document, we define three major life cycle phases: program planning, development, and software support. Four principal software activities occur within the development and software support phases. These are requirements analysis, design, implementation, and integration and test. Measurement results must be provided at appropriate decision points throughout the life cycle.

	Decisions made in one phase or activity affect the results of other phases and activities. Measurement provides insight into the current phase, as well as helping to project the consequences of current actions into later phases. For example, the selection of a specific software developer during program planning affects the level of performance realized by the program during development and software support. Consequently, it is important to adopt a life cycle perspective when developing a measurement program. Over the course of the software life cycle, the issues of concern to Program Managers may change. However, the basic measurement principles still apply.

1.4 Measurement Implementation Considerations

	Because the software measurement process is an integral part of the software development, support, and acquisition process, many members of the organization play a role. As such, appropriate resources must be allocated in order for the measurement process to work effectively.

	The most important player’s and their roles in software measurement process are the following:

1) Program Manager - Identifies issues, and interprets and allows action based on measurement information.

2) Measurement Analyst - Specifies measurement requirements, analyzes data and reports results.

3) Developer Team - May be a contractor or government developer. Collects and packages data for the program.

4) Executive Manager - Has several Program Managers reporting, defines overall program management requirements, and periodically reviews program status.

	Experience from a wide variety of commercial and government organizations shows that the cost of implementing and operating a measurement process as described in this PSM Guide ranges from one to five percent of the program's software budget. This is a relatively small amount when compared to the cost of conventional review and documentation based program monitoring techniques.

� For instructional purpose only. Edited version of “Practical Software Measurement”, Defense Acquisition Deskbook, Version 1.3, December 31, 1996.

